Schedule
STAT 410: Linear Regression (Fall 2017)
Date | Topics | Readings | Slides (handout) | Homework | Lab |
8/22 | Introduction | 1.1-1.3 | Lecture1 | ||
8/24 | Parameter estimation (SLR) | 2.2.1, 2.2.3, 2.11 | Lecture2 | delivery.R & data | ||
8/29&8/31 | UNIVERSITY CLOSES (HARVEY) | Homework1 | |||
9/5, 9/7 | Properties of estimators in SLR | 2.2, 2.3, 2.4; Appendix C.2 | Lecture 3 | Lab1 (Intro. to R) | |
9/12 | Real data practice | Lecture1-3 | Lecture4 (R Markdown) | Lab2 | |
9/14&9/19 | Multiple linear regression | 3.1, 3.2.1-3.2.4 | Lecture5 | Homework 2 (Canvas) | No lab |
9/21 | Multiple linear regression (inference) | 3.3-3.5
|
Lecture6
|
||
9/26 | ANOVA | 2.3.2, 2.3.3, 3.3.1 | Lecture7 | Lab 3 | |
9/28 | General linear hypothesis and Simultanesous CI | 3.3,4, 3.4.3 | Lecture8 | ||
10/3 | Midterm Review | Midterm Review | |||
10/5 | Exam 1 | ||||
10/10 | NO CLASS | ||||
10/12 | Model diagnostics I | 4.2.1, 4.2.2, 4.2.3 | Lecture9 | ||
10/17 | Model diagnostics II | 6.1, 6.2, 6.3, 6.4 | Lecture10 | Lab 4 | |
10/19 | Midterm 1 & Project | ||||
10/24 | Mixed model | 5.5, 5.6 | Lecture11 | ||
10/26 | Categorical analysis | 8.1, 8.2, 8.3 | Lecture12 | ||
10/31
11/2 |
Multicollinearity | 9.1, 9.2, 9.3, 9.4 | Lecture13 | Lab 5 | |
11/7 | Model selection | Ch. 10 | Lecture14
|
||
11/9 | Logistic regression | Ch.13 | |||
11/14 | Presentation I | ||||
11/16 | Presentation II | ||||
11/21 | Penalized regression: Ridge & LASSO | Reference: Chapter 3 of The Elements of Statistical Learning by Hastie, Tibshirani and Friedman | |||
11/23 | NO CLASS | ||||
11/28 | Wrap-up | Lab6 | |||
11/30 | Exam 2 |