Research

Research Areas

Theory and Methods: variable selection, symbolic regression, Gaussian process & kernel methods, image analysis, quantile regression, nonparametric Bayes, scalable algorithms, functional data analysis
Application: materials informatics, biomedical application, neuroimaging, computational neuroscience

 

Editorial Service 

Associate Editor, Bayesian Analysis, Jan 2019-

Associate Editor, new ACM Transactions on Probabilistic Machine Learning2023-

Associate Editor, Computational Statistics & Data Analysis, 2024-

 

Preprints

[53] Ye, S. and Li, M. (2024). Ab initio nonparametric variable selection for scalable Symbolic Regression with large p. arXiv: 2410.13681

[52] Luo, H. and Li, M. (2024). Ranking Perspective for Tree-based Methods with Applications to Symbolic Feature Selection. arXiv: 2410.02623

[51] Liu, Z. and Li, M. (2023). Optimal plug-in Gaussian processes for modeling derivatives. Journal of the American Statistical Association, revision invited. arXiv: 2210.11626

[50] Liu, Y., Li, M. and Morris, J. S. (2024). Scalable Function-on-Scalar Quantile Regression for Densely Sampled Functional Data. Under review. arXiv: 2002.03355

[49] Zeng, Z., Li, M. and Vannucci, M. (2024). Bayesian Covariate-Dependent Graph Learning with a Dual Group Spike-and-Slab Prior. Biometrics, revision invited.

[48] Lin, H. and Li, M. (2023). Valid confidence intervals for regression with best subset selection. Under review. arXiv: 2311.13768 [Code]

[47] Liu, R., Li, K. and Li, M. (2023). Estimation and Hypothesis Testing of Derivatives in Smoothing Spline ANOVA Models. Under review. arXiv: 2308.13905

[46] Liu, X., Wu, Y., Irving, D.L. and Li, M. (2021). Gaussian graphical models with graph constraints for magnetic moment interaction in high entropy alloys. AOAS, R&R. arXiv:2105.05280 [Code]

[45] Liu, Z. and Li, M. (2020). Equivalence of Convergence Rates of Posterior Distributions and Bayes Estimators for Functions and Nonparametric Functionals. arXiv: 2011.13967

[44] Lu, J., Li, M. and Dunson, D. (2018). Reducing Over-clustering via the Powered Chinese Restaurant Process. arXiv:1802.05392.

 

Forthcoming

[43] Cao, Z., Li, M., Ogilvie, H.A. and Nakhleh, L. (2023+). The Impact of Model Misspecification on Phylogenetic Network Inference. Bulletin of the Society of Systematic Biologists, accepted. [Preprint]

[42] Blackburn, K. W., Green, S. Y., Kuncheria, A., Li, M., Hassan, A. M., Rhoades, B., Weldon, S. A., Chatterjee, S., Moon, M. R., LeMaire, S. A. and Coselli, J. S. (2024+). Predicting operative mortality in patients who undergo elective, open thoracoabdominal aortic aneurysm repair. JTCVS Open, accepted.

[41] Morales-Demori, R., Chen, B., Heinle, J., Li, M. and Anders, M. (2024+). Assessment of B-Natriuretic Peptide Levels After Stage 1 Palliation in Hypoplastic Left Heart Syndrome Patients. Pediatric Cardiology, accepted.

 

2024

[40] Li, M., Liu, Z., Yu, C.-H. and Vannucci, M. (2024). Semiparametric Bayesian inference for local extrema of functions in the presence of noise. Journal of the American Statistical Association, 119(548), 3127–3140. [Offical link] [Preprint version]

[39] Ye, S., Senftle, P.T. and Li, M. (2024). Operator-induced structural variable selection for identifying materials genes. Journal of the American Statistical Association, 119(545), 81–94. [Code] [R package]

[38] Lamba, H. K., Kim, M., Li, M., Civitello, A. B., Nair, A. P., Simpson, L., Herlihy, J. P., Frazier, O. H., Rogers, J. G., Loor, G., Liao, K. K., Shafii, A. E. and Chatterjee, S. (2024). Predictors and Impact of Prolonged Vasoplegia after Continuous-flow Left Ventricular Assist Device Implantation. Journal of the American College of Cardiology: Advances, 3(5), 100916.

[37] Zeng, Z., Li, M. and Vannucci, M. (2024). Bayesian Image-on-Scalar Regression with a Spatial Global-Local Spike-and-Slab Prior. Bayesian Analysis, 19(1), 235–260. [Code]

[36] Liu, R., Li, M. and Ma, L. (2024). Efficient in-situ image and video compression through probabilistic image representation. Signal Processing, 215, 109268. [Code] (This is the journal version of our previous CVPR paper)

[35] Yu, C.-H., Li, M. and Vannucci, M. (2024). Semiparametric Latent ANOVA Model for Event-Related Potentials. Data Science in Science, 3(1), 2294204. [Code]

[34] Mohammadi, M. and Li, M. (2024). Model-free prediction of time series: a nonparametric approach. Journal of Nonparametric Statistics,36(3), 804–824.

[33] Pluta, D., Hadj-Amar, B., Li, M., Zhao, Y., Versace, F. and Vannucci. M. (2024). Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes. Scientific Reports, 14, 8856.

[32] Li, G., Liu, Z., Salan-Gomez, M., Keeney, E., D’Silva, E., Mankidy, B., Leon, A., Mattar, A., Elsennousi, A., Coster, J., Kumar, A., Rodrigues, B., Li, M., Shafii, A., Garcha, P. and Loor, G. (2024). Risk Factors, Incidence, and Outcomes Associated with Clinically Significant Airway Ischemia. Transplant International, 37, 12751.

 

2023

[31] Liu, Z. and Li, M. (2023). On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators. Journal of Machine Learning Research, 24(266):1–37.

[30] Liu, R., Li, M. and Dunson D. (2023). PPA: Principal Parcellation Analysis for Brain Connectomes and Multiple Traits. NeuroImage, 276, 120214. [Code]

[29] Wang, Z., Magnotti, J., Beauchamp, M. and Li, M. (2023). Functional Group Bridge for Simultaneous Regression and Support Estimation. Biometrics, 79(2), 1226–1238. [R package][Data]

[28] Yu, C.-H., Li, M., Noe, C., Fischer-Baum, S. and Vannucci, M. (2023). Bayesian Inference for Stationary Points in Gaussian Process Regression Models with Applications to Event-Related Potentials AnalysisBiometrics, 79(2), 629–641.

[27] Edrisi, M., Ogilvie, H.A., Li, M. and Nakhleh, L. (2023). MoTERNN: Classifying the Mode of Cancer Evolution Using Recursive Neural Networks, RECOMB-CG 2023: Comparative Genomics (International Conference on Research in Computational Molecular Biology), 232–247, 2023.

[26] Ryan, C.T., Zeng, Z., Chatterjee, S., Wall, M.J., Moon, M.R., Coselli, J.S., Rosengart T.K., Li, M., and Ghanta, R.K. (2023), Machine Learning for Dynamic and Early Prediction of Acute Kidney Injury after Cardiac SurgeryThe Journal of Thoracic and Cardiovascular Surgery, 166(6), e551–e564.

[25] Beroukhim, K., Williams, P.H., Goldberg, L.H., Bovenberg, M.S., Tan, X., Li, M., Hall, E., Tarantino, I. and Hamel, R. (2023). A Prospective, Randomized Controlled, Single-Blinded Study to Assess the Effect of a 33-Gauge Needle Versus a 34-Gauge Needle on Pain Experienced During Injection of Local Anesthetic on the Face. Journal of Drugs in Dermatology: JDD, 22(11), 1124–1127.

[24] Chacon-Alberty, L., Ye, S., Elsenousi, A., Hills, E., King, M., D’vya, E., Leon, A. P., Salan-Gomez, M., Li, M., Hochman-Mendez, C., and Loor, G. (2023). Effect of intraoperative support mode on circulating inflammatory biomarkers after lung transplantation surgery. Artificial Organs, 47(4), 749–760.

 

2022

[23] Li, M. and Ma, L. (2022). Learning Asymmetric and Local Features in Multi-Dimensional Data through Wavelets with Recursive Partitioning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7674–7687. [Matlab code][R package]

[22] Lin, H. and Li, M. (2022). Double spike Dirichlet priors for structured weighting. Journal of Machine Learning Research, 23(248):1−28. [Code]

[21] Chacon-Alberty, L., Kanchi, R.S., Ye, S., Hochman-Mendez, C., Daoud, D., Coarfa, C., Li, M., Grimm, S.L., Baz, M., Rosas, I., and Loor, G. (2022). Plasma protein biomarkers for primary graft dysfunction after lung transplantation: a single-center cohort analysis. Scientific Reports, 12, 16137.

[20] Liu, C.-Y., Ye, S., Li, M. and Senftle, P.T. (2022). A Rapid Feature Selection Method for Catalyst Design: Iterative Bayesian Additive Regression Trees (iBART). Journal of Chemical Physics, 156, 164105.

[19] Li, M., Wang, K., Maity, A. and Staicu, A.M. (2022). Inference in Functional Linear Quantile Regression. Journal of Multivariate Analysis, 190, 104985. [R Code]

[18] O’Neil, E.R., Lin, H., Shamshirsaz, A.A., Naoum, E.E., Rycus, P.R., Alexander, P.M., Ortoleva, J.P., Li, M. and Anders, M.M. (2022). Pregnant/Peripartum Women with COVID-19 High Survival with ECMO: An ELSO Registry Analysis. American Journal of Respiratory and Critical Care Medicine, 205(2), 248–250.

 

2021

[17] Zeng, Z. and Li, M. (2021). Bayesian Median Autoregression for Robust Time Series Forecasting. International Journal of Forecasting, 37(2), 1000–1010. [Code]

[16] Chacon-Alberty, L., Ye, S., Daoud, D., Frankel, W.C., Virk, H., Mase, J., Hochman-Mendez, C., Li, M., Sampaio, L.C., Taylor, D.A. and Loor, G. (2021). Analysis of Sex-based Differences in Clinical and Molecular Responses to Ischemia Reperfusion after Lung Transplantation. Respiratory Research, 22(1), 318.

[15] O’Neil, E.R., Lin, H., Li, M., Shekerdemian, L., Tonna, J.E., Barbaro, R.P., Abella, J.R., Rycus, P., MacLaren, G., Anders, M. and Alexander, P.M. (2021). ECMO Support for Influenza A: Retrospective Review of the ELSO Registry Comparing Seasonal and Pandemic Subtypes. Critical Care Explorations, 3(12), e0598.

[14] Lin, Y., Saboo, A., Frey, R., Sorkin, S., Gong, J., Olson, G.B., Li, M. and Niu, C. (2021). CALPHAD Uncertainty Quantification and TDBX. JOM73, 116–125.

 

2020

[13] Li, M. and Dunson, D. (2020). Comparing and weighting imperfect models using D-probabilities. Journal of the American Statistical Association115, 1349–1360. [R code]

[12] Liu, C.-Y., Zhang, S., Martinez, D., Li, M. and Senftle, P. T. (2020). Using Statistical Learning to Predict Interactions Between Single Metal Atoms and Modified MgO(100) Supports. npj Computational Materials, 6,102.

[11] Liu, R., Li, M. and Ma, L. (2020). CARP: Compression through Adaptive Recursive Partitioning for Multi-dimensional Images2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14306–14314. [Code]

[10] Liu, Y., Li, M. and Morris, J. S. (2020). Function-on-Scalar Quantile Regression with Application to Mass Spectrometry Proteomics Data. Annals of Applied Statistics, 14(2), 521–541. [Code]

[9] Li, M. and Goldman, R. (2020). Limits of Sums for Binomial and Eulerian Numbers and their Associated Distributions. Discrete Mathematics, 343(7), 11870. 

[8] Tang, W. and Li, M. (2020). Scalable Double Regularization for 3D Nano-CT Reconstruction. Journal of Petroleum Science and Engineering, 192, 107271. [Matlab code]

 

2018

[7] Li, M. and Schwartzman, A. (2018). Standardization of Multivariate Gaussian Mixture Models for Background Adjustment of PET Images in Brain Oncology. Annals of Applied Statistics, 12(4), 2197–2227.

[6] Li, M. (2018). Invited discussion of “Using Stacking to Average Bayesian Predictive Distributions” by Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Bayesian Analysis, 13(3), 951–956.

 

2017

[5] Li, M. and Ghosal, S.(2017). Bayesian Detection of Image Boundaries. Annals of Statistics, 45(5), 2190–2217.

[4] Syring N. and Li, M. (2017). BayesBD: An R Package for Bayesian Inference on Image Boundaries. R Journal, 9(2), 149–162.

 

2014-2015

[3] Li, M., Staicu, A.M. and Bondell, H. (2015). Incorporating Covariates in Skewed Functional Data Models. Biostatistics, 16(3), 413–426.

[2] Li, M. and Ghosal, S.(2015). Fast Translation Invariant Multiscale Image Denoising. IEEE Transactions on Image Processing, 12(24), 4876–4887.

[1] Li, M. and Ghosal, S.(2014). Bayesian Multiscale Smoothing of Gaussian Noised Images. Bayesian Analysis, 9(3), 733–758.