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 Sequential Monte Carlo Methods

 for Dynamic Systems

 Jun S. Liu and Rong CHEN

 We provide a general framework for using Monte Carlo methods in dynamic systems and discuss its wide applications. Under

 this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of
 these methods are partial combinations of three ingredients: importance sampling and resampling, rejection sampling, and Markov

 chain iterations. We provide guidelines on how they should be used and under what circumstance each method is most suitable.

 Through the analysis of differences and connections, we consolidate these methods into a generic algorithm by combining desirable

 features. In addition, we propose a general use of Rao-Blackwellization to improve performance. Examples from econometrics
 and engineering are presented to demonstrate the importance of Rao-Blackwellization and to compare different Monte Carlo
 procedures.

 KEY WORDS: Blind deconvolution; Bootstrap filter; Gibbs sampling; Hidden Markov model; Kalman filter; Markov chain Monte
 Carlo; Particle filter; Sequential imputation; State-space model; Target tracking.

 1. INTRODUCTION

 Dynamic modeling is an important statistical analysis

 tool that has attracted much attention from researchers in

 different fields. One widely used dynamic model, the linear

 state-space model, has long been an active subject in study-

 ing time series data and control systems (Harvey 1989; West

 and Harrison 1989). Despite their computational complex-

 ities, nonlinear/non-Gaussian state-space models are also

 important in various applications. A partial list of refer-

 ences is given in Example 2.

 Models of dynamic nature have also been used in var-

 ious situations, such as updating and learning in graphi-

 cal models or probabilistic expert systems (Kong, Liu, and

 Wong 1994; Spiegelhalter and Lauritzen 1990), simulat-
 ing protein structures (Leach 1996; Vasquez and Scherago

 1985), genetics (Irwing, Cox, and Kong 1994), and combi-

 natorial optimizations (Wong and Liang 1997). An example
 of expert system updating can be found in Berzuini et al.

 (1997).
 In this article we study Monte Carlo computation meth-

 ods for real time analysis of dynamic systems. Such a sys-

 tem can be abstractly defined as follows.

 Definition 1. A sequence of evolving probability distri-
 butions -rt(xt), indexed by discrete time t = 0,1, 2,. . ., is
 called a probabilistic dynamic system. The state variable xt
 can evolve in the following three ways

 increasing dimension: xt+l has one more component
 than xt; that is, xt+l = (Xt, Xt+l), where xt+1 can be
 a multidimensional component.
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 * discharging: xt+l has one fewer component than xt;
 that is, xt =(xt+-,dt).

 * no change: xt+l = xt.

 Most of this article will be devoted to the first situation of

 increasing dimension, whereas the other two situations can

 be handled similarly. Throughout the article, -r( ) always

 refers to the target distribution of the dynamic system, and

 p( ) is a generic symbol for probability distributions.

 In most applications, the difference between 7rtt+ and JTt
 is caused by the incorporation of new information in the

 analysis. Of interests in these systems are usually

 * prediction: -rt(xt+?) (i.e., when -Wt can be "extended"
 to a new component xt+i, the best prediction of xt+I
 before new information arrives is via -rt)

 * updating (smoothing): irt+?(xt) (i.e., revision of the
 previous state given new information)

 * new estimation: lrt+?(xt+?) (i.e., what we can say
 about xt+I in light of new information).

 The following two examples are typical dynamic systems,

 and they will be referred to repeatedly throughout this ar-

 ticle.

 Example 1. Bayesian Missing-Data Problem. Suppose

 that z1,... , Zn are iid from model p(z 0), but some z's are
 only partially observed. Let zi = (yi, x,), where yi is the ob-
 served part and xi is the missing part. Let Yt = (Yi, , Yt)
 and xt = (xo,,... xt), where xo = 0. The dynamic sys-
 tem in this case is Frt(xt) p(xtlyt). Of interest is usually
 the posterior distribution Fn(X0) = f7n (Xn) dx1 ... dXn
 When 0 (i.e., xo) can be explicitly integrated out from
 p(Xt, yt) = P(Y,..., yt, x, . . ., xtIO)p(O), such as in the
 case of multivariate normal data with missing components

 (Kong et al. 1994), a good approach is to draw x,... ,Xn

 from n (xI,... , x,n) and then use Rao-Blackwellization to
 approximate -rFl (0).
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 Example 2: State-Space Model. Such a model consists

 of two parts: observation equation, which can be formulated

 as Yt ft (I xt, 0), and state equation, which can be repre-
 sented by a Markov process as xt qt( Ixt - ,0). The Yt are
 observations and the xt are referred to as the (unobserved)
 states. Of interest at any time t is the posterior distribution

 of Xt (, 0,X) ,...,xt). Hence the target distribution at
 time t is

 7Tt(Xt) = 7Tt(,0,11, . . . Xt) = p(,0,, XI , xt lyt)
 t

 cx p(O, q$) f7 (ys Ix $)qs(xs, sIx, 0),
 s=1

 where the initial distribution qi (xl lxo, 0) is assumed known.
 When the parameters 0 and X are given (such as in many

 engineering problems), xt represents (x1, .. ., xt). In prac-
 tice, the x's can be the unobserved true signals in sig-
 nal processing (Liu and Chen 1995), the actual words in
 speech recognition (Rabiner 1989), the target characteristics
 (e.g., location, velocity) in a multitarget tracking problem
 (Avitzour 1995; Gordon, Salmon, and Smith 1993; Gordon,
 Salmon, and Ewing 1995), the image characteristics in com-
 puter vision (Isard and Blake 1996), the gene indicator in a
 DNA sequence analysis (Churchill 1989), or the underlying
 volatility in an economical time series (Pitt and Shephard
 1997). The applications of dynamic state-space model in
 DNA and protein sequence analysis are often referred to

 as hidden Markov models (Krogh, Brown, Mian, Sjolander,
 and Haussler 1994; Liu, Neuwald, and Lawrence 1997).

 Except for a few special cases, closed-form analysis of

 dynamical systems is usually formidable. Recently, there
 has been a surge of interest in designing Monte Carlo meth-
 ods for the analysis of these models. In fact, most of the
 references given in Example 2 use Monte Carlo or iterative

 methods. To implement Monte Carlo for a dynamic sys-
 tem, we need, at any time t, random samples either drawn

 from irt(xt) directly, or drawn from another distribution,
 say gt(xt), and weighted properly (importance sampling).
 Static methods-for example, most of the popular Markov

 Chain Monte Carlo (MCMC) schemes (Carlin, Polson, and
 Stoffer 1992; Carter and Kohn 1994)-achieve this end by
 treating each -rt separately and repeating same kind of it-
 erative processes. In other words, all of the results (i.e.,
 random draws) obtained at time t are discarded when the

 system evolves from WTt to WTt+?.
 However, when the system is slowly varying [i.e., the

 L2 distance between -Ft (xt) and 7rt+l (xt) is small], random
 samples obtained at time t can be "reused" to help construct

 random samples at time t + 1 so as to improve efficiency.

 Imagine that we have a sample St = {x,j 1 ,... ,m}

 drawn from -rt. When the system evolves to -rt+,, it is de-
 sirable to keep those x(i) and attach to each of them one
 or several x4)l drawn from some appropriate distribution

 gt?1( lxvj). Let Ht?i denote the sample space of cct+i.
 Then the foregoing idea is equivalent to drawing a sample

 from the product space St a Ht?i. Very often the evolved

 sample xWj) (xlj,x I+)i) needs to be reweighted or re-

 t-Fl

 sampled to accommodate 'Ft+I. This is the basic principle
 behind almost all available sequential Monte Carlo methods

 (see e.g., Berzuini, Best, Gilks, and Larizza 1997, Gordon et

 al. 1993, Hendry and Richard 1990, Kitagawa 1996, Kong

 et al. 1994, Liu and Chen 1995, MacEachern, Clyde, and

 Liu 1998, Pitt and Shephard 1997, and West 1992.

 To further elaborate on these ideas, in this article we

 describe a general framework for using sequential Monte

 Carlo methods in dynamic systems. Under this framework,

 we extend and unify previously more restrictive methods,

 study.various reweighting and resampling techniques pro-
 posed, and discuss connections and comparisons of these

 approaches. A main message that we want to communicate

 in this article is that the sequential importance sampling

 (SIS) setting provides a good framework for understanding

 many existing methods and for further improving them (via
 Rao-Blackwellization, collapsing, etc.).

 Section 2 describes the general idea of the SIS method

 and several key implementation issues, such as the choice of

 sampling distribution, resampling, and Monte Carlo infer-

 ence. Section 3 discusses several local Monte Carlo meth-

 ods that are needed when SIS encounters certain difficulties.

 Section 4 proposes three methods for resampling from St
 and provides a generic algorithm that combines SIS and
 resampling. Section 5 brings in Rao-Blackwellization for

 improving estimation. Section 6 gives three examples to

 demonstrate the use of Rao-Blackwellization and to com-

 pare different procedures. Section 7 concludes with a brief

 summary.

 2. SEQUENTIAL UPDATING IN DYNAMIC SYSTEMS

 One of the most effective methods for analyzing a com-
 plicated probabilistic system (such as a nonlinear state-
 space model) is the Gibbs sampler (Carlin et al. 1992; Carter

 and Kohn 1994; Gelfand and Smith 1990; Tanner and Wong
 1987). However, the Gibbs sampler is less attractive when

 one's interest is in real time prediction and updating in a

 dynamic system. Another situation for the Gibbs sampler to

 be ineffective is when the states of the resulting samples are

 very "sticky," rendering the sampler very difficult to move
 (MacEachern, Clyde, and Liu 1998). In this case it appears
 that intelligently choosing a dynamic system for sequen-
 tial updating can be more efficient (Wong and Liang 1997).
 We first describe one of such sequential updating strategies,
 then discuss its several key implementation issues.

 2.1 Sequential Importance Sampling

 A useful way to represent a complicated high-

 dimensional distribution, such as -rt (Xt), is by multiple
 Monte Carlo samples drawn from it. Multiple imputation
 (Rubin 1987) is a successful example of such a practice for
 survey data. In this article we advocate a similar method-
 ology to that of Rubin's for analyzing dynamic systems.

 Definition 2. A random variable X drawnl freom a dis-
 tribution g is said to be properly weighted by a weighting

 function w(X) with respect to the distribution ir if for any
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 integrable function h,

 Eg{h(X)w(X)} = Er{h(X)}.

 A set of random draws and weights (x(U), w(U)), j =
 1, 2, .. ., is said properly weighted with respect to -r if

 lim Z m= (() )r(h)(X))
 moo Ej=lW

 for any integrable function h. In a practical sense, we can

 think of wF as being approximated by the discrete distribu-

 tion supported on the x(j) with probabilities proportional to
 the weights w(j).

 Let St {x),j 1 ,... ,m} denote a set of random
 draws that are properly weighted by the set of weights Wt-

 {W Uj): = 1,...) m} with respect to -rt. Let Ht+? be the
 sample space of Xt+l, and let gt+? be a trial distribution.
 Then the SIS procedure consists of recursive applications
 of the following SIS steps for j 1,.. ,:

 A. Draw Xt+I =x(j) from gt+? (xt?+l Ix3); attach it to

 x U) to form x?F)l = ((3-)l x(? 1).
 B. Compute

 ut? = + (2)

 and let

 wt?1- = UUt?i1Wt

 Here ut is called an "incremental weight." It is easy

 to show that (x(j)?, w(j+)) is a properly weighted sam-
 ple of 7rt+,. Thus the SIS can be applied recursively
 for t = 1, 2,.. ., to accommodate an ever-changing dy-
 namical system.

 The SIS method is also useful in non-Bayesian com-

 putation, such as evaluating likelihood functions. Appli-
 cations in this direction have been discussed by Hendry

 and Richard (1991) and Irwing et al. (1994). Briefly, sup-
 pose that we are interested in evaluating the likelihood

 function L(0) = p(yi, .. , yt; 0) in the missing-data prob-
 lem (Example 1). Then for each fixed 0 value, we apply
 the SIS procedure to impute (xI, ... ,xt) sequentially with
 91 (xi) = p(xi Iyi; 0) and

 gs (Xs 1x, . ..., Xs-I) = P(xs 1Xsi, Y'; 0), s = 2,3 ....

 Kong et al. (1994) showed that =wt(j)/m is an un-
 biased estimate of L(0). In Section 5 we show that
 Rao-Blackwellization (Casella and Robert 1996; Liu,
 Wong, and Kong 1994) can be applied to better esti-
 mate.

 2.2 Choice of the Sampling Distribution gt+i in

 Sequential Importance Sampling

 The choice of the sampling distribution gt+1 iS directly

 related to the efficiency of the proposed SIS method. For

 Bayesian missing-data problems (Example 1), Kong et al.

 (1994) suggested using

 9t+1 (Xt+l ixt) =:::: 7Tt+l (Xt+l ixt)-P(Xt+ l yt+l) Xt))

 with the incremental weight ut+l cx p(yt+l lyt, xt). Note
 that although the exact value is not easily known, ut+l
 can sometimes be computed up to a normalizing constant,

 which is sufficient for estimation using formula (1). This

 choice of gt+i was also used by Liu and Chen (1995). For
 the state-space model (Example 2) with known xo = (0,
 a similar trial distribution is

 9t+1 (Xt+il xt) ?C ft+l (yt+l lxt+l, )qt+l (xt+l lxt, 0)

 Ut+1 ft+l (yt+l Ixt+l, O)qt+l

 x (xt+l Ixt, O)dxt+,.

 In the general dynamic system setting, we suggest choos-

 ing g as

 9t+?1(Xt+xt) -'t+I(Xt+?II xt), t = 1,2, ... , (3)

 with the incremental weight

 Ut+ = 'Ft+i (xt) (4)
 7Tt (Xt)

 Note that ut+l in (4) does not depend on the value of xt+l,
 and this feature is important to several issues discussed

 later. The reason that drawing xt+l from irt+? (Xt+? xt) is
 more desirable than drawing it from a more or less arbitrary

 function gt+1 (Xt+l IXt) is clear from rewriting the incremen-
 tal weight (2.1.1) as

 7Tt+?(Xt) 7Tt+- (Xt+-l Xt)

 Intuitively, the second ratio is needed to correct the discrep-

 ancy between gt+?(xt+?lxt) and W?t+?(Xt+?lxt) when they
 are different.

 Other choices of gt+1 are also possible. For instance, if
 -Ft(xt) can be "extended" for xt+l, then one may use

 gt+1xt+il Xt) = Wt(Xt?1 Xtl). (5)
 For Example 1, this corresponds to g*+1 (Xt+l Xt) -
 p(xt+llxt,yt). The corresponding incremental weight is
 Ut+? cx P(Yt+llYt,Xt+1). For Example 2, choice (5) cor-
 responds to

 t+1 (xt+l xt) = qt+l (xt+l Ixt, 0)

 and ut+l oc f(yt+l Ixt+?). This was used by Avitzour (1995),
 Gordon et al. (1993, 1995), and Kitagawa (1996). Note that
 this trial distribution generates xt+l using only the state
 equation.

 Compared to (3), distribution (5) is usually easier to

 use but tends to result in greater Monte Carlo variation

 (Berzuini et al. 1997). In the state-space model case, it is ob-

 vious that (3) is more desirable than (5), because the former
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 incorporates the most recent information in yt+?, whereas
 the latter does not. Using (3) has another advantage in es-

 timation, which we discuss in Section 2.4. In many appli-

 cations, however, it may not be easy to use (3). Section 3

 provides methods for coping with this difficulty.

 2.3 Resampling in Sequential Importance Sampling

 Suppose that. St = {x),j 1,... ,m} is properly
 weighted by Wt = 1w,(i),j = I... m} with respect to
 -Ft. Let us call each x(J) a "stream." Instead of carrying
 the weight Wt as the system evolves, it is also legitimate,
 and sometimes beneficial (Liu and Chen 1995), to insert

 a resampling step between SIS recursions. This procedure,

 called SIS with resampling (SISR), is as follows:

 1. Sample a new set of streams (denoted as St) from St
 according to the weights w().

 2. Assign equal weights to the streams in St.

 It is not immediately clear why one needs resampling

 at certain stage t. As much detailed theoretical discussion

 has been given by Liu and Chen (1995), we mention only

 a few heuristics on the issue. First, if the weights w(J) are
 constant (or near constant) for all t (such a case occurs

 when one can draw from -Wt directly), then resampling only
 reduces the number of distinctive streams and introduces

 extra Monte Carlo variation. This suggests that one should

 not perform resampling when the coefficient of variation,

 cv 2, for the w(3) is small. As argued by Kong et al (1994),
 the "effective sample size" is inversely proportional to 1 +

 cvti. Second, Kong et al. (1994) showed that as the system
 evolves, cv 2 increases stochastically. When the weights get
 very skewed at time t, carrying many streams with very

 small weights is apparently a waste. Resampling can pro-

 vide chances for the good (i.e., "important") streams to
 amplify themselves and hence "rejuvenate" the sampler to
 produce a better result for future states as system evolves,

 though it does not improve inferences on current state xt.
 Examples in Section 6 illustrate these heuristics.

 The resampling schedule (i.e., when to resample) can be
 either deterministic or dynamic, and the sampling scheme
 can be either simple random sampling (with weights), resid-
 ual sampling, or local Monte Carlo resampling (Sec. 4). The
 methods of Berzuini et al. (1997), Gordon et al. (1993),
 Hiirzeler and Kiinsch (1995), Kitagawa (1996), and Pitt and
 Shephard (1997) can all be seen as SIS with special choices

 of gt+1 and with resampling at every stage.

 2.4 Inference With Monte Carlo Samples

 In dynamic systems, it is often of interest to obtain

 on-line inference on the state variables; that is, estimat-

 ing E,th(xt) at time t. This is straightforward by using
 (1) when available is a sample {xt( } properly weighted

 by 4t(j. However, several issues concerning statistical ef-
 ficiency of the estimates are worth mentioning. Casella

 (1997) provided a general treatment on this issue.

 * Estimation should be done before a resampling step,

 because resampling introduces extra random variation

 in the current sample.

 * Rao-Blackwellization can improve the accuracy of the
 estimation. For example, when weight (2.1.1) does not

 depend on xt+i, such as in the case of using the opti-
 mal gt+l in (3), the current state xt+l should be esti-
 mated before it is drawn from gt+?, using

 A 2'~E=1 wt+) 7rt+ 1 (h(xt+ ) lxt))
 E lh(xt+,) = -1 Wl (6)

 provided that E,t+1 (h(xt+?) Ixj)) can be calculated
 easily. In mixture normal state-space models (Exam-
 ple 2 and Sec. 6.3) and other examples, this is indeed
 achievable.

 * Delayed estimation (i.e., estimation of ETth(xt-k) at
 time t) usually is more accurate than concurrent es-

 timation (estimation E,t-k h(xt-k) at time t - k), be-
 cause the estimation is based on more information.

 However, precautions must be taken with frequent

 resampling, because resampling reduces distinct past

 samples.

 2.5 Some Related Methods

 The state-space model as described in Example 2 has a

 special Markovian feature that the more general dynamic

 models do not possess. With given xo (q,0), Example 2
 satisfies the condition

 p(xt+i ixt, Yt, Yt+i) = p(xt+i ixt, Yt+i)

 ?x ft+?(Yt+11Xt+1)P(Xt Yt).

 That is, with given xt, previous xti, and Yt can be "for-
 gotten." As in a Kalman filter, the posterior distribution

 p(xtlyt) can be obtained recursively, at least in principle.
 The main difficulty is that analytical formulas for this re-

 cursive updating only exist for certain exponential family
 models (West and Harrison 1989) or finite discrete state-
 space model (Rabiner 1989).

 Because of the popularity and simplicity of the state-
 space model, several sequential Monte Carlo methods have
 been proposed to deal with nonlinear/non-Gaussian cases.
 In particular, Hendry and Richard (1991) noted the potential
 use of the SIS in such models. West (1992) suggested us-
 ing a mixture distribution to approximate p(xtlyt) at each
 time t, and then proceeding with an adaptive importance
 sampling strategy to produce a mixture approximation of

 p(xt+l lYt) at time t + 1. Difficulties with this approach are
 that finding good mixture approximations for every t can
 be time-consuming, and that it can be difficult to implement
 when the dimensionality of xt is high.

 Gordon et al. (1993) and Kitagawa (1996) have proposed
 using importance resampling to obtain a discrete approxi-
 mation of P&ct-i lyt?i), with a given set of samples drawn
 from p(xt Yt). They called such a procedure the bootstrap

 filter or particle filter. The method has been successfully
 applied to multiple target tracking (Avitzour 1995; Gordon
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 et al. 1995) and time series analysis (Kitagawa 1996). Their

 method is essentially an SIS with gt+l chosen as (5) and
 resampling at every t. Estimations were performed after

 resampling, which is less efficient. Hiirzeler and Kiinsch
 (1995) and Pitt and Shephard (1997) have proposed im-
 proved algorithms for the state-space model. We discuss
 their approaches in detail in Section 3.

 3. LOCAL MONTE CARLO METHODS FOR
 SEQUENTIAL IMPORTANCE SAMPLING

 As we have discussed in Section 2.3, a favorable choice

 of the recursive sampling distribution is gt+l (xt+l?xt) =
 WFt+i (Xt+?i xt). However, drawing xt+l from WTt+l (Xt+l |Xt)
 may not be directly achievable, and the incremental weight

 ut+1 may not be easy to compute. Under such a premise,
 methods have been developed to overcome this difficulty
 for the state-space model. (see, e.g., Berzuini et al. 1997,
 Hiirzeler and Kiinsch 1995, and Pitt and Shephard 1997).

 We propose here to extend their methods to our general
 SIS setting for simultaneously estimating the new weight

 wt+1 and drawing xt+i. We refer to these methods as "local
 Monte Carlo methods" for SIS.

 3.1 The Basic Idea

 As usual, we let St = {xj), j = 1,... ,m} and Wt
 W(3)j 1,.. m}. The central idea of this section is to
 regard -rt as being represented by the Monte Carlo sample

 St with weights Wt. Thus at stage t + 1, xt can be treated as
 a random variable with this discrete a priori distribution. To

 simplify notation, we introduce a random variable J, which
 takes values in the set {1,..., m}, to indicate the streams in

 St. Pitt and Shephard (1997) also used such a formulation,
 and called J the auxiliary variable.

 Let the joint distribution of J and xt+l be

 P(J, Xt+1) DC 7t+1 (xt ,:;xt+,) WJ 7 -_ _ t_ _x _ _ _ _ _ (J

 Then the marginal distribution of xt+l from (7) is

 m W

 Tt+ij(Xt+l) a E t+1(xt+i t w(3) (8)

 which would be a good approximation to the true marginal

 distribution -t+, (xt+?) provided that the Monte Carlo sam-
 ple size m is large and the distribution of the wt is not too
 skewed. The marginal distribution of J is

 P(J DC tj t(X ) dxt?l

 - tot 't? t ) Wt = Wt(j)Ut )1 = W~t+l

 which is exactly the new weight at time t + 1 for x(i) ac-
 cording to (2.1.1) and (4).

 Hence, if we have a method to draw a sample,

 (jl, xj) (j, x(jf)), of (J, xt+,) from (7), then the SIS
 step can be achieved as follows:

 B. Estimate wtv1) by fj frequency of {J j} in the
 sample.

 A. Form x 1 (x43), xt*+1) if fj z& 0, where x* is any
 value of xt+l that is paired with J j in the sample.

 Several methods for generating samples from (7) are de-
 scribed in the following subsections, and a few remarks are

 as follows.

 Remark 1. As long as the estimates of the weights are

 unbiased, the new sample is properly weighted by f3 with
 respect to 7Tt+w. An accurate estimation of the weights is

 not necessary. Those xt with f3=0 can be replaced by a
 random draw from those with fj :& 0. If the estimation of

 the incremental weight ut )1 is of interest, then one can set
 w(y) 1_ for y c St in the above calculations.

 Remark 2. Since the local MC methods provide sam-

 ples of (J, xt+?) with distribution (7), they achieve resam-
 pling effect automatically. See details in Section 4.

 Remark 3. None of the methods described in this sec-
 tion are necessary when direct sampling from the optimal

 gt+l of (3) is achievable.

 3.2 Rejection Methods

 Suppose that we can draw xt+l from a trial distribution
 gt+i(xt+ilxt) that is not equal to (3). There are two rejec-
 tion methods to sample (J, xt+?) from (7): one based on
 the joint distribution of (J, xt+?) and the other based on
 the marginal of xt+i. Let the "covering constant" be

 Ct?1 = SUP 7Tt+i(xt ) Xt+l)
 t+ jxt+i 7Ft(Xt(j))gt*+(Xt+11Xtj)

 Rejection Method 1.

 * Draw J j with probability proportional to w (3)

 * Given J = draw xt+l from g*+ 1(xt+l Jx(j) )
 * Accept (j, Xt+1) with probability

 7Ft+ 1 (Xt ,) Xt+i1)

 Ct+1 tXt (tj) )gt*+l(Xt+11lXt)

 Rejection Method 2. The first two steps are identical to

 method 1. In step 3, accept xt+l with probability

 771W()t+l(x( ), xt+l)I/Ft(xt)

 Then the sample sct+ accepted from using either of the
 methods follows (8). In method 2, we need to redraw J
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 with probability

 P(J = j'lxt+i) DC t+(t()tlWt() (9)

 Methods 1 and 2 are identical in the state-space model
 case and are an essential part of the work of Hiirzeler
 and Kiinsch (1995). Generally, method 2 is a Rao-
 Blackwellization of method 1 (Casella and Robert 1996)
 and can be more efficient.

 3.3 Importance Resampling

 Importance resampling method can also be used to gen-

 erate approximate samples from (7):

 * Draw J j with probability proportional to w(i)

 * Given J j, draw xt+1 from some gt*+1(lxl lx?)).
 * Assign to the sample (j, xt?1) the weight

 WU Xt1 Tt+1 (xt( ) Xt+l)
 (2, t+l ) t (X (2))g* J(Xt+l lx(j)) -

 The obtained sample (j, xt?i) is properly weighted by the

 w(j, Xt+?) with respect to (7). At this point, one has three
 choices: (a) do resampling to achieve (7) approximately, as
 implemented by Gordon et al. (1993) and Kitagawa (1996);

 (b) estimate P(J = j) a w()1 directly using the weighted
 sample of (j, xt+?); or (c) proceed with the newly sampled
 (x<j), xt+?) with new weights w(j, Xt+?), as proposed by
 Pitt and Shephard (1997).

 In addition, Pitt and Shephard (1997) suggested using
 an adjustment multiplier to improve efficiency. Briefly, one
 can instead draw J = j with probability proportional to

 Wt()a? )1 and then adjust the weight accordingly. It is con-

 ceivable that by carefully choosing at )1 (a function of x(A)
 and gt* , one can achieve good efficiency. This idea can also
 be applied to rejection sampling and the following MCMC
 approach.

 3.4 Hastings Independence Chain Approach

 Alternatively, one can also use Hastings independence

 chain approach (Hastings 1970), as suggested by Berzuini
 et al. (1997) for the state-space model. Here we prescribe
 a generalization of their method for dynamic systems. De-
 tailed description of the general independence chain method
 is given in the Appendix.

 Suppose that we can draw Xt+1 from a trial distribution
 g9t+(xt+? Ixt). Then starting with an arbitrary JO = JO, we
 iterate the following steps:

 * Draw J j' with probability proportional to w("?)
 * Draw Xt+1 = x't+ from g* 1(xt+llx$j)) or from a

 reversible MCMC step with gt*1 (. xt? )) as its invari-
 ant distribution. (See the proof of its correctness in

 the Appendix.)

 * Set (Jk?1, xt++h) equal to (j', sc>i) with probability
 Pa, and equal to (Jk, xtk+4) with probability 1 -Pa,

 where

 Pa =ni {1, PUX,1W t,x + x Jl
 pa = mn 1p(jk, Xk J)w U ') * x+JJX l(2 )}

 where p(J, xt+?) is defined in (7).

 The resulting equilibrium distribution of (J, xt+?) is ex-
 actly (7). Theoretical properties of the Hastings chain have

 been studied by Liu (1996), who showed that this method

 is comparable to the rejection method in terms of statistical

 efficiency. The second rejection method described in Sec-
 tion 3.3 can also take this MCMC twist. Its detail is omitted

 here.

 The advantages of rejection methods are that no iterations

 are needed and the resulting sample is "exact," whereas the

 disadvantage is that ct+1 must be computed and the re-
 sulting scheme can be very inefficient. Liu (1996) provided
 more detailed comparisons of the three methods. An inter-
 esting variation is to combine rejection and importance sam-

 plings as suggested by Liu, Chen, and Wong (1998). When

 the difference between -Wt+?(Xt+? xt) and gt* 1(xt+l?xt) is
 large, none of the methods is ideal. To alleviate this prob-

 lem for the state-space model, Hiirzeler and Kiinsch (1995)
 proposed some smoothing techniques, and Pitt and Shep-

 hard (1997) suggested using mode approximation to find a

 good adjustment multiplier.

 3.5 Illustration with the State-Space Model

 Suppose that one is interested in estimating the state-
 space signal xt on line (Example 2) with the parameters

 0 and 0 given. For simplicity, we suppress 0 and 0 in all
 relevant formulas. Thus the dynamic system for the state-

 space model is WFt(Xt) a tI=l fs YsJxs)qs(xs Jx_-1) and

 tt+i (Xt+i, Xt)
 Tt+1(xt+?1 xt) a Ft(xt)

 ft+? (yt+l Ixt+?)qt+l (xt.+l $xt).

 Although sampling from t+? (xt+lx Xt) can be diffi-
 cult, one usually can easily draw from the state equa-

 tion g+ 1(xt+llxt) = qt+?(xt+?ilxt). Rejection methods
 1 and 2 are identical in this situation. Let ct+? -
 sup2t+1 ft?i(Yt?i Xt?1). The procedure is as follows:

 * Draw J =j with probability proportional to w 0), then

 draw xt+l from qt+?(xt+llxt())
 * Accept (J, xt?1) with probability p =ft+l(yt+ilxt+i)/

 Ct+?.

 All of the samples of (J, xt+?) drawn from this scheme
 follows the distribution

 p(J Xtj, t+1) Dc ws(j)f (yt+1Jxt+)qt+1(xt+1 ixij))

 Similarly, with g* 1 = qt+?(Xt+?lxt), the importance re-
 sampling procedure becomes:

 * Draw J - j with probability proportional to Wt().

 * Draw xt+i from qt+? xt+ ct? i).
 * Assign weight to the sample (j, xt?1) as ft?i(Yt?i

 $Ct? ).
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 The procedure of Gordon et al. (1995) and Kitagawa

 (1996) is exactly this, with an additional step of resam-

 pling from the obtained sample using the assigned weight.

 In addition to the use of g*+ qt+i(Xt+?lxt), Pitt and
 Shephard (1997) incorporated an adjustment multiplier

 a(jt) ft+i(Yt+1t?(j)i), where ptj)l can be the mode,
 the mean, or another likely value of xi) Thus the re-
 sulting weight for the obtained sample is w(j,Xt+?) =

 ft+1 (Yt+il xt+i)l) ft+i (Yt+1 Ipt+l
 In the independence chain approach with the same 9t+

 as before, the rejection probability can be computed as

 Pa -min 1 ft+1 (Yt+m {x1t+)wt
 l ft+1 (Yt+1 |St+1) t()|

 and the rest can be carried out routinely.

 4. RESAMPLING AND A GENERIC ALGORITHM

 In much of the early work on Monte Carlo methods for

 the state-space model, resampling has played a major role

 in evolving the system from time t to t + 1 (see, e.g., Gor-
 don et al. 1993 and Kitagawa 1996). In this section we de-
 scribe three resampling methods, discuss possible resam-

 pling schedules, and then prescribe a generic Monte Carlo
 algorithm for dynamic systems.

 4.1 Resampling Methods

 4.1.1 Simple Random Sampling. In this procedure one
 samples from St with replacement with probability propor-

 tional to the weights in Wt. Liu and Chen (1995) used this
 approach to modify the skewed importance weights result-
 ing from the SIS.

 In general, a resampling step is inserted between two SIS

 steps. But when the weight (2.1.1) does not depend on xt+I
 (i.e., when sampling distribution (3) is used), the resam-
 pling step should be inserted inside a SIS step. Specifi-
 cally, an optimal SISR consists of SIS step B -? resam-
 pling step -X SIS step A. This generates more distinct

 samples of xt+l than performing resampling after SIS steps
 A and B.

 4.1.2 Residual Sampling. The following scheme can

 replace simple random sampling:

 * Retain kj = [mwt(*j) copies of x(j) for each j, where
 W(*j) is the renormalized weight of w(j). Let mr =
 m-ki-. ..-km.

 * Obtain mr iid draws from St with probabilities pro-

 portional to mw*- ky,j = 1,.. k, m.

 * Reset the weights to 1.

 It is easily shown that the residual sampling dominates the
 simple random sampling (SRS) in having smaller Monte

 Carlo variance and favorable computation time, and it does

 not seem to have disadvantages in other aspects. A compar-

 ison of the two procedures is given in Section 6.2.

 4.1.3 Local Monte Carlo Resampling. Because the

 local Monte Carlo methods described in Section 3 pro-

 vide samples of (J,xt+i) with distribution (7), it appears

 that these methods achieve the resampling effect automati-

 cally. More precisely, let (jk, xk?1), k=1, ... ., m* be a set of
 draws obtained from using either a rejection method or the

 Hastings method (after burning) in Section 3. Then the set

 of streams S4, (xt ) xt+1), k = 1, ... , m* } is a desir-
 able resample. The weights associated with the new streams

 are equal to 1. Note that m* is not necessarily equal to m.

 This procedure avoids weight estimation.

 4.2 Resampling Schedule

 As shown by our earlier arguments and later examples,

 resampling at every stage is neither necessary nor efficient.

 It is thus desirable to prescribe a schedule for the resam-

 pling step to take place. Two such schedules are available:

 deterministic versus dynamic. In a deterministic schedule

 one conducts resampling at time to, 2to, . . ., where to de-
 pends on difficulty of a particular problem and may require

 some experimentation. In a dynamic schedule, one gives

 a sequence of thresholds C1, C2,..., and monitors the co-

 efficient of variation of the weights cvt2. When cvt2 > Ct

 occurs, one invokes resampling. A typical sequence of ct

 can be ct =a + bt~.

 4.3 A Generic Monte Carlo Algorithm

 We recommend the following algorithm for Monte Carlo
 computation in dynamic systems:

 1. Check the weight distribution: perform one of the fol-

 lowing two choices at time t:
 Dynamic. If the weight (or estimated weight) distribu-

 tion is not too skewed, (i.e., cvt2(w) < ct), go to step
 2. Otherwise, go to step 3.

 Deterministic. If t to kto for some integer k, go to step
 2. Otherwise, go to step 3.

 2. Set t = t+l. Invoke an SIS step (Sec. 2.1). Sometimes
 one may need a local Monte Carlo procedure (Sec. 3) to
 accomplish recursive sampling and weighting. Go to step 1.

 3. Set t = t + 1. Invoke an SISR step (Sec. 2.3). Use
 residual sampling whenever possible. To avoid weight cal-

 culation, use local Monte Carlo resampling methods. Go to
 step 1.

 A noticeable difference between our use of local Monte

 Carlo procedures and that of others (Berzuini et al. 1997;
 Hiirzeler and Kiinsch 1995; Pitt and Shephard 1997) is that
 we decouple the local Monte Carlo outputs into two parts:
 estimating the new weights for the xt and obtaining the

 draws of xt+,. Such a decoupling has two advantages: Ob-
 taining an explicit weighting can tell us how different 7rt+l
 and Wt are and how well the SIS works, and it provides a
 means to improve efficiency via the use of residual sampling
 and delayed resampling. Because the local Monte Carlo pro-

 cedures are merely used to achieve a good gt+i, any other
 means that leads to this end should be considered whenever

 possible.
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 5. RAO-BLACKWELLIZATION

 In all SISR procedures, the discrete representation of

 't+, (xt), by a sample of x(i) with the weight w(+) degen-
 erates very rapidly as the number of resamplings increases

 between t and t + s. Consequently, estimating a quantity of

 interest, such as E,,+? (h(xt)), can be very inaccurate.
 Take Example 1, for instance. As SISR proceeds with t,

 the number of distinctive xo (i.e., 0) values decreases mono-
 tonically. This rapidly leads to a degenerate posterior dis-

 tribution of 0. To alleviate this problem, we can apply a

 variant of Rao-Blackwellization (Casella and Robert 1996;

 Kong et al. 1994; Liu et al. 1994).

 Suppose that, with the Bayesian missing-data setting of
 Example 1, we have at time t the observed information

 Yt and multiple draws (0(i),x U)) j 1,...,m, properly
 weighted by w(j). If the number of distinctive values of the

 0(0) is too small, we can fragment each stream (0(), xU))
 by drawing 0(j), . . . , 0(i') from the complete-data posterior

 distribution p(0 lxj), yt). When the posterior distribution of
 0 is continuous, we will have km distinctive 0 values af-

 ter Rao-Blackwellization. The weight associated with each

 (o(i), xU)) is w(j). (This is the consequence of the fact
 that after a few steps of MCMC transition with respect to

 which the target distribution -Wt is invariant, the sample is

 still properly weighted with respect to -Wt (see MacEachern
 et al. 1998). To retain constant total number of streams m,
 one can either set k = 1 or resample m streams from the

 km streams according to their corresponding weight. Rao-

 Blackwellization as described earlier results in a sampling

 distribution that is closer to the target distribution, because

 it uses more information.

 If at time t we want p(Olyt), we can use the Rao-
 Blackwellized estimate,

 LY= 1 43 (o Xt, Yt )
 ip(0yt) > ' tp( Ix() t

 instead of the weighted histogram of the sampled O(U).

 To compute the likelihood function L(0lyt), we can first
 draw 0 uniformly (if the parameter space is bounded; oth-
 erwise, one need to combine the flat prior with some data)

 and apply the SIS to draw multiple copies (0(), x(3)) with
 weight w(j). Then the Rao-Blackwellized estimate of the
 likelihood function is

 L(0lyt) ~ E=1 wP( Ixt ), Yt)

 where p(Olx j), ys) is the complete-data posterior distribu-
 tion of 0 with flat prior.

 Berzuini et al. (1997) noticed that when some form of
 conditional independence is present (e.g., in a missing-data
 problem when a parameter 0 is involved conditional on
 which the missing data are independent of each other),

 one may sometimes "disengage" those early observation

 y's and early imputations. For instance, in Example 1

 P(cct?1, Yt? OS,xt, yt) =P(xt, Yt 10). Hence all of the xt and

 Yt can be "disengaged." Similarly in Example 2, the xt-l
 and Yt-i can be "disengaged." The advantage of doing this

 is obvious; it saves memory and may speed up computation.

 However, when disengagement is implemented, Rao-

 Blackwellization is no longer directly applicable. A remedy

 is to represent the information contained in the disengaged

 components as a mixture distribution of the 0 (via Rao-

 Blackwellization) and then proceed in combination with re-

 sampling. A numerical experiment on this method is under

 investigation.

 6. EXAMPLES

 6.1 Econometric Disequilibrium Model

 Initially proposed by Fair and Jaffee (1972), this class

 of models has attracted much attention from economet-

 rics researchers in past few decades. It provides a theo-

 retical foundation for the philosophical arguments (gener-

 ally called Keynesian theory, named after the economist

 J. M. Keynes, who attacked the dominant paradigm of eco-
 nomics in 1930s) against the postwar mainstream approach

 to economics, the equilibrium methods (for reviews and
 discussions see Quandt 1982, 1988). Here we only look
 at a special dynamic disequilibrium model of Hendry and
 Richards (1990). Almost all components other than the rel-
 evant lagged variables, such as prices and other environ-

 mental exogenous variables, are excluded for the sake of
 simplicity. We illustrate an improvement in estimation by
 using Rao-Blackwellization.

 Let q = (qlt, q2t) be bivariate normal random variables
 with

 E(qi(t+,) Iqt) = oziqit; var(qt+l lqt) =I

 for t = 0, ... , T - 1, where I is the identity matrix. The
 observed data for this model are Yt = min{qlt, q2t}, for
 t = 1, ... , T. For simplicity in presentation, the initial states

 qlo and q2O were taken to be 0 and assumed known. Of
 interest is the likelihood function or posterior distribution

 of (al,ca2).
 Let At = max{qlt,q2t}, let 6t be i if Yt = qit, and let

 0 = (al,ca2)- If we write xt = (At,5t), then the distri-
 bution involved in sequential sampling is gt+? (xt4 1xt)
 p(xt+? 0I, Xt, Yt, Yt+?), and that involved in weight updating
 is Wt+1 a p(yt+l 10, Xt, yt). Detailed computations are given
 in the Appendix.

 For each fixed 0, Hendry and Richard (1991) used SIS
 to evaluate the likelihood L(0 YT) based on equation (8) of
 Kong et al. (1994). Putting a flat prior on 0, we can treat
 the likelihood computation as a Bayesian computation and
 use the SIS method to simulate weighted samples of (0, x)
 jointly. Rao-Blackwellization can be applied to improve the
 efficiency.

 We simulated 50 data observations Yl. . , Y50 from the
 model with oz1 = ?Z2= .6, and initial value ql = q21 = 0.
 Assuming that we know that ce1 =?2=CE, we used the SIS
 method with m =10,000 to obtain the likelihood function
 for ce, as shown in Figure 1. It took 8.16 seconds on a
 Silicon Graphics workstation with R10000 microprocessor,
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 Figure 1. The Posterior Distribution of a 1 After the 50 Observations
 With Uniform Prior -, Result from Rao-Blackwellization; ,result from

 the standard SIS.

 and the cv2 at the end of the SIS is 5.13. The smooth curve

 is the result from the Rao-Blackwellization.

 6.2 Blind Deconvolution

 The moving-average system, Yt q q5 ixt_ + Et, is
 often seen in digital communication. The input signal xt
 takes value from a known set of discrete states and Et

 N(O, u-2). By observing the blurred signals Yi, ... i Yn, it is
 of interest to reconstruct the xt and to estimate the system

 coefficients Xi. (More references can be found in Liu and
 Chen 1995.)

 W.e took a simulated example from Chen and Li (1995)
 in which the system equation is

 Yt = Xt + .8xtl - .4xt-2 + Et.

 The input signals xt were iid uniform on {0, 1, 3}. The

 signal-to-noise ratio was controlled at 15 dB, which gives

 a standard deviation of .3 for the noise. The Xi in this case
 can be easily integrated out with a normal prior, and all of
 the sampling and weighting calculations have been given

 by Liu and Chen (1995). A direct SIS without using a local
 Monte Carlo procedure applies.

 A total of n = 200 signal sequences were simulated, each

 with 200 sequential observations from the system. Our in-
 terest was in testing the simple SIS with different resam-
 pling schedules and with the two resampling methods; that
 is, simple random sampling (s) versus residual sampling
 (r). One thousand streams (m = 1,000) were carried in the
 SIS procedure. We estimated the input signal xt by MAP

 using the weight at time t + 3. Table 1 shows the num-

 ber of misclassification of signals in 200 simulations, each

 with 200 sequential signals. Here resampling frequency to

 means procedures (s) or (r) were applied at to, 2to, 3to, . . .
 (so to = 200 implies no resampling). For dynamic schedul-

 ing, the resampling procedure is applied whenever the ef-

 fective sample size (defined as m/(I + cv2(w)) is less than

 3. In our example, this dynamic schedule leads to 5-15 re-

 samplings in processing 200 signals.

 Table 1 shows that resampling either too often (to small)
 or too rare (to large) tends to produce a large number of mis-
 classifications. When resampling too rare, (e.g., to = 200),

 there are numerous instances when the Monte Carlo method

 is never on the right track, resulting in disastrous estima-

 tions. In the reasonable range of to (between 4 and 20), the

 residual sampling method seems to be slightly better than

 simple random sampling.

 6.3 Target Tracking in Clutter

 Tracking multiple targets in clutter is of interest to en-

 gineers and computer scientists. The problem has received

 much attention recently and many solutions have been pro-
 posed, among which the method of Avitzour (1995) and
 Gordon et al. (1995) is most closely related to the method
 described in this article. As has been mentioned earlier, their
 algorithm uses the sampling distribution (5). Here we use
 the example of Avitzour (1995) to show that using sampling
 distribution (3) can produce better tracking results.

 The tracking problem of Avitzour (1995) can be
 formulated as a state-space model with state variable

 xt=(x41), x2)), where xt') is the location of the target on
 a straight line and x42) is the target velocity. The Zt are
 location observations. They evolve in the following way:

 x (1) = x(1) + x(2)+ 1 w(t + 1),

 x (2) = (2) +w(t+

 and

 Zt? 1 (1) +) ?1t+1 + v(t +1),

 where w(t) N(O,q2) and v(t) N(0,r2) are inde-
 pendent. We further assume that we have only probability

 Pd to make the location observation Zt. The rate of false

 Table 1. Demonstration of the Numbers of Misclassified Signals (First Column) in a Total of 200 Simulations, Each With 200 Sequential Signals

 Deterministic resampling frequency n/to Dynamic

 1 5 20 50 100 200 schedule

 Error s r s r s r s r s r s r s r

 0-2 11 5 7 13 13 13 7 10 1 0 0 0 11 12

 3-5 49 49 46 53 61 65 53 49 28 28 7 7 69 58

 6-8 41 43 50 52 72 70 57 58 59 58 12 12 66 67

 9-11 23 20 27 30 38 38 52 48 43 44 47 47 29 41

 12-15 10 9 13 7 8 6 17 20 33 32 44 44 16 8

 16-25 11 10 14 11 8 8 14 15 35 35 84 84 6 11

 16-50 4 10 8 9 0 0 0 0 1 3 6 6 1 1

 >50 51 54 35 25 0 0 0 0 0 0 0 0 2 2

 NOTE. All of the columns except the first are results from different combinations of SIS strategies; "s" and "r" represent simple random sampling and residual sampling, respectively.
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 Figure 2. Tracking ResultS From Using Three Different Sequential Monte Carlo Methods. We used m = 500 and resampled at every step. The
 y-axis is the distance between the estimated and true positions of the target. (a) Results from using gt+?1 prescribed by (3); (b) results from using
 the collapsing procedure; (c) results from using (5).
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 signal clutter is .ozA, with A being the width of 4r detec-
 tion region. Therefore, the actual observation Yt is a vec-
 tor of length mt among which at most one is the true
 observation. The distribution of rnt is Bernoulli(pd) +
 Poisson (AA). The false signals are uniformly distributed
 in the detection region.

 In this case the sampling distribution 7rt+? (xt+? |Yt+i, Xt)
 in (3) can be easily shown to be a mixture of mt+l nor-
 mal distributions, with means and variances being functions

 of Yt+l and xt. (More details are given in the Appendix.)
 Resampling is conducted before each xt+l is drawn, and
 concurrent estimation of E7r,+?(xt+?) is done using Rao-
 Blackwellization (6).

 Another trick that we can play with this example is to
 integrate out the state variable xt and use Monte Carlo to

 impute an indicator variable that tells which component of

 Yt is the true signal. With the true signal identified, it is
 trivial to estimate the true location of the target. This col-
 lapsing procedure produces an even better result.

 Figure 2 shows the plots of tracking errors (estimated lo-

 cation - true location) of 50 simulated runs, with r2 = 1.0,

 q = .1, Pd = .9, and A 1. Five hundred streams (m
 = 500) were used, with resampling done at every step. Fig-
 ure 2(a) resulted from using the optimal sampling distribu-
 tion (3); 2(b), from using the collapsing procedure. Figure
 2(c) shows the result from using a less-optimal sampling

 distribution gt+l ? q(xt+ilxt), following Avitzour (1995).
 Figure 2(a) has 13 runs with absolute value of tracking er-
 rors exceeding 10 at least once, 2(b) has 16, and 2(c) has
 20. Similarly, Figure 2(a) has four runs exceeding the 20
 limit, 2(b) has four, 2(c) has eight.

 The foregoing parameter combination is slightly different
 from that of Avitzour (1995), with smaller clutter density
 but larger state equation variance. With their configuration,
 the results are similar, but the differences between different
 procedures are smaller.

 7. SUMMARY

 In this article we have proposed a general framework
 for on-line Monte Carlo computations for dynamic sys-
 tems. It is clear that almost all of the available sequential
 Monte Carlo procedures can be unified under this frame-

 work. This general setting provides a common ground for
 understanding and improving various similar methods de-

 veloped for specific models. It also provides a general guid-
 ance on how such procedures should be used in practice and
 how different "tricks" developed for specific problems can

 be combined to achieve maximum efficiency. In particular,
 we discussed several key issues in implementing sequen-
 tial Monte Carlo methods; namely, choices of the recursive

 sampling distribution gt+?, advantages and disadvantages
 of resampling and their scheduling, efficient use of Monte
 Carlo samples, and Rao-Blackwellization.

 Besides the obvious application of sequential Monte
 Carlo in the state-space models, there are many other prob-
 lems that can be formulated as a dynamic system and solved

 using techniques described in this article. For example, the
 SIS procedure can be built into a MCMC scheme to produce

 a more efficient transition proposal chain. The Hastings re-
 jection procedure described in the Appendix can be used
 in combination. This type of Monte Carlo methods (some-
 times called "configuration-biased Monte Carlo") have been
 tested effective for simulating biopolymers (Leach 1996).

 (See Irwing et al. 1994; Kong et al. 1994; Wong and Liang
 1997). We hope that the results reported here can stimulate

 more interest and effort from other researchers on this type
 of problem.

 APPENDIX: THE INVARIANT DISTRIBUTIONS OF
 THE HASTINGS INDEPENDENCE CHAIN

 This scheme was first discussed by Hastings (1970, sec. 2.5) as
 one way to do importance sampling. Tierney (1994) generalized
 the discussion under the term "independence chains," and it was

 called "Metropolized independence sampling" by Liu (1996). The

 general scheme can be stated as follows.

 Suppose that ir(x) is known up to a normalizing constant, and
 we are able to draw independent samples from g(x). A Markov

 chain {X1, X2, ... } can be constructed with the transition function

 K ((y)minf (z)min{l , if y 0 x

 f1-Zx g(Z) min{l, w(z) } dz, if y = x,

 where w(x) = ir(x)/g(x) is called the importance ratio (or impor-

 tance weight). Intuitively, the transition from X?, - x to X,+1 - y
 is accomplished by generating an independent sample from g(.)
 and then "thinning" it down based on a comparison of the corre-

 sponding importance ratios w(y) and w(x). It can be shown that 7T
 is an invariant distribution of the constructed Markov chain. Note

 that the foregoing scheme is only a special example, that more se-

 rious Metropolis-Hastings algorithms most commonly make de-

 pendent local moves instead of independent global jumps. An ei-
 genanalysis of this chain was provided by Liu (1996).

 Suppose that we cannot directly sample from g(x) but have
 a reversible MCMC procedure (a condition that most single-step
 MCMC schemes satisfy), with transition function A(x, y), that
 has g(x) as its invariant distribution. Then we have g(x)A(x, y) =
 g(y)A(y, x). Hence if we conduct a Metropolis step with A(x, y)
 as the proposal chain and 7r(x) as the target distribution, then the
 rejection probability can be computed as

 7r (y) A (y, x)7r(x)g() Pa = min 1, min 1, ry)(x) 7r (x) A(x, y) '7r (x)sg(Y)

 = Mnin{1 W(}) .

 Hence the procedure described in Section 3.4 is still valid but can

 no longer be called an "independence chain" approach.

 A.1 Computations Involved in the Example (Section 6.1)

 For computing the weights, we must compute

 p(yt O,xt-i,yt-i) = 0(yt - a1q1(t_-))[I - (yt - a2q2(t-1))]

 + q(yt - c2q2(t-l))[1 -1(yt - iq1(t_l))],
 and for imputing missing data, we need

 P(6t = ll0, Xt-l,Yt-l, Yt)

 A(yt - Ocq1(t_l))[1-) (ytI-I2q2(t1))]

 ( 1,yt,Oxtiy ) 1-1(yt -2q2(t-l))
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 and

 p(At 6t = 2, yt, 0, xti , Yt-I) = (At - aIqI(t_I))
 1 - 1?(yt - alql(t-1))

 Suppose that the prior distribution for 0 is PO (al, a2); then given
 complete observations, the posterior

 p(O I ql, * * * , qT ) CX pO (0)

 x exp{ ET (qlt - alql(t1))2 + (q2t - a2q2(t-1)) }

 Without loss of generality, we take po(0) to be uniform on [0, 1]2.
 Then the posterior distribution is simplified as

 P(0ql,..., qT) oc exp {(ai -ai )2 (a2 a2) }

 0 <al,a2 < 1,

 where
 T -1/2

 bi t qI(t_I))
 t=2

 T

 al =bl qltql(t-,),
 t=2

 T -1/2

 b2 X >q2(t-ar) I
 t=2

 and
 T

 a2 =b2 q2t q2(t -1)-
 t=2

 To sample from the truncated normal distribution X 4 (x)
 with X > c, where 7r(x) is standard normal density, we use the
 following strategy. When c < 0, we simply conduct a simple nor-

 mal random number generation and do rejection until we have a

 sample satisfying X > c. For c > 0, especially when c is large we

 use an exponential random variable with the rejection method.

 Suppose that the exponential distribution Aoe-7AX is to be used
 as an envelop function; then we need to find the minimum constant

 b so that

 q(x +c) <bAoe ?, x>0.
 I1- -(c) -

 This gives us the best solution for b:

 b - exp (A2 - 2Aoc)/2}
 27rAo(1 - ID(c))

 The acceptance rate for using this exponential distribution is then

 1/b. To achieve the minimum rejection rate, we further find that
 the best choice for A0 is

 Ao = (c + c/+4)/2.

 With this choice of Ao and b, we implement the rejection method of
 von Neumann (1951). The rejection rate for this scheme decreases
 as c increases, and this rate is very small for moderate to large c
 (e.g., for c 0,1, 2, the rejection rates are .24, .12, and .07).

 A.2 Computations for Target Tracking (Section 6.3)

 Let yt?i (Yt?1(1),. ,Yt?1(mt?i)) be the observed signals at

 time t + 1. Then

 f (yt+i IXt+1)

 d(1 P) [ mt?1 e nA?l! ]

 F 1 mt?1 1

 + Pd [mt?(t+ 1 (i) Xt+ 1)

 e Tn ( AA)mt?1 -1

 (mt+?-1)!

 mt+ 1

 - Pd ? Or (Yt+ 1 (i) Xt+ 1) + (1 -Pd)AI
 S=1

 eA Amt+l -1
 x< mt+l!

 for t - 0,1, 2,. ., where ?br refers to the normal density with
 variance r2. Furthermore,

 0,r(yt+,(i) Ixt+l )q(xt+l Ixt )

 - 1 fxp |_ (Yt+1() - x$)1)2 (X )l -X (1) - X(2))2
 7rqr e 2r2 2(q/2)2

 = c exp { - ( ?t+ i)}
 27ut1 2o+I J

 where

 2 2 [t1) (2) (

 q2+ 4r2' +2 (/ )
 and

 ( 2 (1) (2) 2

 C=2ut?l {x 1 Yt?iw )+ Xt +X xt /At+1
 c= exp-2 [r2 (q/2)2 t+2

 Hence f(yt+lIxt+l)q(xt+lIxt) is a mixture of mt+1 normal dis-
 tributions.

 [Received August 1996. Revised September 1998.]
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