
STAT 410 Linear Regression

Lab Session 2 / Sep 12, 2017 / Handout

This lab is intended to briefly review the linear algebra part related to our course. We review some

basic definitions and their important properties in linear algebra.

1. Column Space.

If A is an m× n matrix with real entries, the column space of A is the subspace of Rm spanned by

its columns. Similarly, the row space of A is the subspace of Rn spanned by its rows.

Example 1: Suppose

A =

[
1 0 1 8

0 1 2 9

]
Then the column space of A is the subspace of R2 spanned by columns

[
1

0

]
,

[
0

1

]
,

[
1

2

]
and

[
8

9

]
. However,[

1

2

]
and

[
8

9

]
can be expressed as linear combinations of

[
1

0

]
and

[
0

1

]
. Therefore, we can also say that

the column space of A is the subspace of R2 spanned by columns

[
1

0

]
and

[
0

1

]
.

2. Rank of a Matrix.

The rank of a n× p matrix is defined to be the maximum number of linearly independent columns,

or equivalently, of independent rows, in the matrix. It is a unique value, with the maximum cannot

exceed min(n, p).

When a matrix is the product of two matrices, say C = AB, its rank can’t exceed the smaller of

the two ranks for the matrices being multiplied, i.e., rank(C) ≤ min (rank(A), rank(B)).

Exercise 1: Suppose

A =

[
4 7 1 8

3 5 2 9

]
Find the row rank of A and the column rank of A.

3. Identity Matrix.

The identity matrix of order k, denoted by I or Ik, is a k×k square matrix whose diagonal elements

are 1’s and whose nondiagonal elements are 0’s.

4. Inverse of a Matrix.

An inverse of a square n× n matrix exists if the rank of the matrix is n. Such a matrix is said to be

nonsingular or of full rank. An n × n matrix with rank less than n is said to be singular or not of full

rank, and does not have an inverse. The inverse of an n× n matrix of full rank also has rank n.

Let A be a k × k matrix. The inverse of A, denoted by A−1, is another k × k matrix such that

AA−1 = A−1A = I

If the inverse exists, it is unique.
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You can show the following:

For a 2× 2matrix A =

[
a b

c d

]
, the inverse of A is

A−1 =

[
d/(ad− bc) −b/(ad− bc)

−c/(ad− bc) a/(ad− bc)

]
.

5. Transpose of a Matrix.

Let A be an n × k matrix. The transpose of A, denoted by A′ or AT , is a k × n matrix whose

columns are the rows of A. For example, if

A =

 5 −7

3 8

−4 2

 ,

then its transpose A′ is

[
5 3 −4

−7 8 2

]
.

Note: If A is an n×m matrix and B is an m× p matrix, then

(AB)′ = B′A′

Exercise 2: Try to show that (AB)′ = B′A′. (Hint: show that the kj-th element of AB equals

the kj-th element of B′A′).

6. Symmetric Matrix.

Let A be a k × k matrix. A is said to be symmetric if A = A′.

7. Idempotent Matrix.

Let A be a k × k matrix. A is called idempotent if

A = AA

If A is also symmetric, then A is called symmetric idempotent. If A is symmetric idempotent, then

I −A is also symmetric idempotent (check it!).

8. Orthonormal Matrix.

Let A be a k × k matrix. If A is an orthonormal matrix, then A′A = I. As a consequence, if A is

an orthonormal matrix, then A−1 = A′.

9. Quadratic Form.

Let y be a k × 1 vector, and let A be a k × k matrix. The function

y′Ay =
n∑

i=1

n∑
j=1

aijyiyj
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is called a quadratic form. A is called the matrix of the quadratic form.

10. Positive Definite and Positive Semi-definite Matrices.

Let A be a k×k matrix. A is said to be positive definite if y′Ay > 0, ∀y ̸= 0. If y′Ay ≥ 0,∀y ̸= 0,

then A is said to be semi-positive definite.

Example 2: The covariance matrix between two random vectorsX and Y , is defined as Cov(X,Y ) =

E[(X − E[X])(Y − E[Y ])′]. The variance-covariance matrix of the random vector Y , denoted by

Cov(Y ), is defined as Cov(Y ) = Cov(Y ,Y ).

Let Y ′ = [Y1, Y2, · · · , Yn] be a random vector and a′ = [a1, a2, · · · , an] be a constant vector. Let

Z = a′Y be a scalar random variable. Since Var(Z) = a′Cov(Y )a ≥ 0, the covariance matrix of any

random vector Y , Cov(Y ,Y ), is a positive semi-definite matrix.

11. Trace of a Matrix.

Let A be a k × k matrix. The trace of A, denoted by trace(A) or tr(A), is the sum of the diagonal

elements of A; thus,

trace(A) =
k∑

i=1

aii

. There are some important properties related to traces:

• If A is an m× n matrix and B is an n×m matrix, then

trace(AB) = trace(BA)

.

• If the matrices are appropriately conformable, then

trace(ABC) = trace(CAB)

.

• If A and B are k × k matrices and a and b are scalars, then

trace(aA+ bB) = a ∗ trace(A) + b ∗ trace(B)

.

12. Rank of an Idempotent Matrix.

Let A be an idempotent matrix. The rank of A is its trace.

13. An Important Identity for a Partitioned Matrix.

Let X be an n× p matrix partitioned such that

X = [X1 X2]
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.

We note that

X(X ′X)−1X ′X = X

X(X ′X)−1X ′[X1 X2] = [X1 X2]

Therefore

X(X ′X)−1X ′X1 = X1

X(X ′X)−1X ′X2 = X2

14. Matrix Derivative.

Let A be a k × k matrix of constants, a be a k × 1 vector of constants, and y be a k × 1 vector of

variables.

1. If z = a′y, then
∂z

∂y
=

∂a′y

∂y
= a

2. If z = y′y, then
∂z

∂y
=

∂y′y

∂y
= 2y

3. If z = a′Ay, then
∂z

∂y
=

∂a′Ay

∂y
= A′a

4. If z = y′Ay, then
∂z

∂y
=

∂y′Ay

∂y
= Ay +A′y

If A is symmetric, then
∂y′Ay

∂y
= 2Ay

Exercise 3: Using the definition that ∂z
∂y

= [ ∂z
∂y1

, ∂z
∂y2

, · · · , ∂z
∂yn

]′, check the validity of the above equations.

15. Expectations.

Let A be a k × k matrix of constants, a be a k × 1 vector of constants, and y be a k × 1 random

vector with mean µ and nonsingular variance-covariance matrix V .

1. E(a′y) = a′µ.

2. E(A′y) = A′µ.

3. Var(a′y) = a′V a
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4. Var(Ay) = AV A′.

Note: If V = σ2I, then Var(Ay) = σ2AA′.

5. E(y′Ay) = trace(AV ) + µ′Aµ.

Note: If V = σ2I, then E(y′Ay) = σ2trace(A) + µ′Aµ.

Most of the above equations can be easily derived from the definition of expectation and covariance.

For equation 5, note that a scalar is always equal to its trace.

16. Multivariate Normal Distribution.

A random vector Y ′ = [Y1 Y2 · · · Yn] is said to have a multivariate normal (or Gaussian) distri-

bution with mean µ and covariance matrix Σ if its probability density function is given by

f(Y ) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(Y − µ)′Σ−1(Y − µ)).
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