## STAT 410 Linear Regression

## Lab Session 2 / Sep 12, 2017 / Handout

This lab is intended to briefly review the linear algebra part related to our course. We review some basic definitions and their important properties in linear algebra.

## 1. Column Space.

If $\boldsymbol{A}$ is an $m \times n$ matrix with real entries, the column space of $\boldsymbol{A}$ is the subspace of $\mathbb{R}^{m}$ spanned by its columns. Similarly, the row space of $\boldsymbol{A}$ is the subspace of $\mathbb{R}^{n}$ spanned by its rows.

Example 1: Suppose

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 0 & 1 & 8 \\
0 & 1 & 2 & 9
\end{array}\right]
$$

Then the column space of $\boldsymbol{A}$ is the subspace of $\mathbb{R}^{2}$ spanned by columns $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}8 \\ 9\end{array}\right]$. However, $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}8 \\ 9\end{array}\right]$ can be expressed as linear combinations of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Therefore, we can also say that the column space of $\boldsymbol{A}$ is the subspace of $\mathbb{R}^{2}$ spanned by columns $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

## 2. Rank of a Matrix.

The rank of a $n \times p$ matrix is defined to be the maximum number of linearly independent columns, or equivalently, of independent rows, in the matrix. It is a unique value, with the maximum cannot exceed $\min (n, p)$.

When a matrix is the product of two matrices, say $\boldsymbol{C}=\boldsymbol{A B}$, its rank can't exceed the smaller of the two ranks for the matrices being multiplied, i.e., $\operatorname{rank}(\boldsymbol{C}) \leq \min (\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B}))$.

Exercise 1: Suppose

$$
\boldsymbol{A}=\left[\begin{array}{llll}
4 & 7 & 1 & 8 \\
3 & 5 & 2 & 9
\end{array}\right]
$$

Find the row rank of $\boldsymbol{A}$ and the column rank of $\boldsymbol{A}$.

## 3. Identity Matrix.

The identity matrix of order $k$, denoted by $\boldsymbol{I}$ or $\boldsymbol{I}_{\boldsymbol{k}}$, is a $k \times k$ square matrix whose diagonal elements are 1's and whose nondiagonal elements are 0's.

## 4. Inverse of a Matrix.

An inverse of a square $n \times n$ matrix exists if the rank of the matrix is $n$. Such a matrix is said to be nonsingular or of full rank. An $n \times n$ matrix with rank less than $n$ is said to be singular or not of full rank, and does not have an inverse. The inverse of an $n \times n$ matrix of full rank also has rank $n$.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. The inverse of $\boldsymbol{A}$, denoted by $\boldsymbol{A}^{-1}$, is another $k \times k$ matrix such that

$$
\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}
$$

If the inverse exists, it is unique.

You can show the following:
For a $2 \times 2$ matrix $\boldsymbol{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the inverse of $\boldsymbol{A}$ is

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{cc}
d /(a d-b c) & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right]
$$

## 5. Transpose of a Matrix.

Let $\boldsymbol{A}$ be an $n \times k$ matrix. The transpose of $\boldsymbol{A}$, denoted by $\boldsymbol{A}^{\prime}$ or $\boldsymbol{A}^{T}$, is a $k \times n$ matrix whose columns are the rows of $\boldsymbol{A}$. For example, if

$$
\boldsymbol{A}=\left[\begin{array}{cc}
5 & -7 \\
3 & 8 \\
-4 & 2
\end{array}\right]
$$

then its transpose $\boldsymbol{A}^{\prime}$ is $\left[\begin{array}{ccc}5 & 3 & -4 \\ -7 & 8 & 2\end{array}\right]$.
Note: If $\boldsymbol{A}$ is an $n \times m$ matrix and $\boldsymbol{B}$ is an $m \times p$ matrix, then

$$
(\boldsymbol{A B})^{\prime}=\boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime}
$$

Exercise 2: Try to show that $(\boldsymbol{A B})^{\prime}=\boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime}$. (Hint: show that the $k j$-th element of $\boldsymbol{A} \boldsymbol{B}$ equals the $k j$-th element of $\boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime}$ ).

## 6. Symmetric Matrix.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. $\boldsymbol{A}$ is said to be symmetric if $\boldsymbol{A}=\boldsymbol{A}^{\prime}$.

## 7. Idempotent Matrix.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. $\boldsymbol{A}$ is called idempotent if

$$
A=A A
$$

If $\boldsymbol{A}$ is also symmetric, then $\boldsymbol{A}$ is called symmetric idempotent. If $\boldsymbol{A}$ is symmetric idempotent, then $\boldsymbol{I}-\boldsymbol{A}$ is also symmetric idempotent (check it!).

## 8. Orthonormal Matrix.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. If $\boldsymbol{A}$ is an orthonormal matrix, then $\boldsymbol{A}^{\prime} \boldsymbol{A}=\boldsymbol{I}$. As a consequence, if $\boldsymbol{A}$ is an orthonormal matrix, then $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\prime}$.

## 9. Quadratic Form.

Let $\boldsymbol{y}$ be a $k \times 1$ vector, and let $\boldsymbol{A}$ be a $k \times k$ matrix. The function

$$
\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} y_{i} y_{j}
$$

is called a quadratic form. $\boldsymbol{A}$ is called the matrix of the quadratic form.

## 10. Positive Definite and Positive Semi-definite Matrices.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. $\boldsymbol{A}$ is said to be positive definite if $\boldsymbol{y}^{\boldsymbol{\prime}} \boldsymbol{A} \boldsymbol{y}>0, \forall \boldsymbol{y} \neq \mathbf{0}$. If $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y} \geq 0, \forall \boldsymbol{y} \neq \mathbf{0}$, then $\boldsymbol{A}$ is said to be semi-positive definite.

Example 2: The covariance matrix between two random vectors $\boldsymbol{X}$ and $\boldsymbol{Y}$, is defined as $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=$ $E\left[(\boldsymbol{X}-E[\boldsymbol{X}])(\boldsymbol{Y}-E[\boldsymbol{Y}])^{\prime}\right]$. The variance-covariance matrix of the random vector $\boldsymbol{Y}$, denoted by $\operatorname{Cov}(\boldsymbol{Y})$, is defined as $\operatorname{Cov}(\boldsymbol{Y})=\operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{Y})$.

Let $\boldsymbol{Y}^{\prime}=\left[Y_{1}, Y_{2}, \cdots, Y_{n}\right]$ be a random vector and $\boldsymbol{a}^{\prime}=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ be a constant vector. Let $Z=\boldsymbol{a}^{\prime} \boldsymbol{Y}$ be a scalar random variable. Since $\operatorname{Var}(Z)=\boldsymbol{a}^{\prime} \operatorname{Cov}(\boldsymbol{Y}) \boldsymbol{a} \geq 0$, the covariance matrix of any random vector $\boldsymbol{Y}, \operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{Y})$, is a positive semi-definite matrix.

## 11. Trace of a Matrix.

Let $\boldsymbol{A}$ be a $k \times k$ matrix. The trace of $\boldsymbol{A}$, denoted by $\operatorname{trace}(\boldsymbol{A})$ or $\operatorname{tr}(\boldsymbol{A})$, is the sum of the diagonal elements of $\boldsymbol{A}$; thus,

$$
\operatorname{trace}(\boldsymbol{A})=\sum_{i=1}^{k} a_{i i}
$$

There are some important properties related to traces:

- If $\boldsymbol{A}$ is an $m \times n$ matrix and $\boldsymbol{B}$ is an $n \times m$ matrix, then

$$
\operatorname{trace}(\boldsymbol{A B})=\operatorname{trace}(\boldsymbol{B} \boldsymbol{A})
$$

- If the matrices are appropriately conformable, then

$$
\operatorname{trace}(\boldsymbol{A} \boldsymbol{B} \boldsymbol{C})=\operatorname{trace}(\boldsymbol{C} \boldsymbol{A} \boldsymbol{B})
$$

- If $\boldsymbol{A}$ and $\boldsymbol{B}$ are $k \times k$ matrices and $a$ and $b$ are scalars, then

$$
\operatorname{trace}(a \boldsymbol{A}+b \boldsymbol{B})=a * \operatorname{trace}(\boldsymbol{A})+b * \operatorname{trace}(\boldsymbol{B})
$$

## 12. Rank of an Idempotent Matrix.

Let $\boldsymbol{A}$ be an idempotent matrix. The rank of $\boldsymbol{A}$ is its trace.

## 13. An Important Identity for a Partitioned Matrix.

Let $\boldsymbol{X}$ be an $n \times p$ matrix partitioned such that

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]
$$

We note that

$$
\begin{aligned}
\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X} & =\boldsymbol{X} \\
\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}\left[\begin{array}{ll}
\boldsymbol{X}_{1} & \boldsymbol{X}_{2}
\end{array}\right] & =\left[\begin{array}{ll}
\boldsymbol{X}_{1} & \boldsymbol{X}_{\mathbf{2}}
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X}_{1}=\boldsymbol{X}_{\mathbf{1}} \\
& \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X}_{\mathbf{2}}=\boldsymbol{X}_{\mathbf{2}}
\end{aligned}
$$

## 14. Matrix Derivative.

Let $\boldsymbol{A}$ be a $k \times k$ matrix of constants, $\boldsymbol{a}$ be a $k \times 1$ vector of constants, and $\boldsymbol{y}$ be a $k \times 1$ vector of variables.

1. If $z=\boldsymbol{a}^{\prime} \boldsymbol{y}$, then

$$
\frac{\partial z}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{a}^{\prime} \boldsymbol{y}}{\partial \boldsymbol{y}}=\boldsymbol{a}
$$

2. If $z=\boldsymbol{y}^{\prime} \boldsymbol{y}$, then

$$
\frac{\partial z}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{y}^{\prime} \boldsymbol{y}}{\partial \boldsymbol{y}}=2 \boldsymbol{y}
$$

3. If $z=\boldsymbol{a}^{\prime} \boldsymbol{A} \boldsymbol{y}$, then

$$
\frac{\partial z}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{a}^{\prime} \boldsymbol{A} \boldsymbol{y}}{\partial \boldsymbol{y}}=\boldsymbol{A}^{\prime} \boldsymbol{a}
$$

4. If $z=\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}$, then

$$
\frac{\partial z}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}}{\partial \boldsymbol{y}}=\boldsymbol{A} \boldsymbol{y}+\boldsymbol{A}^{\prime} \boldsymbol{y}
$$

If $\boldsymbol{A}$ is symmetric, then

$$
\frac{\partial \boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}}{\partial \boldsymbol{y}}=2 \boldsymbol{A} \boldsymbol{y}
$$

Exercise 3: Using the definition that $\frac{\partial z}{\partial y}=\left[\frac{\partial z}{\partial y_{1}}, \frac{\partial z}{\partial y_{2}}, \cdots, \frac{\partial z}{\partial y_{n}}\right]^{\prime}$, check the validity of the above equations.

## 15. Expectations.

Let $\boldsymbol{A}$ be a $k \times k$ matrix of constants, $\boldsymbol{a}$ be a $k \times 1$ vector of constants, and $\boldsymbol{y}$ be a $k \times 1$ random vector with mean $\boldsymbol{\mu}$ and nonsingular variance-covariance matrix $\boldsymbol{V}$.

1. $E\left(\boldsymbol{a}^{\prime} \boldsymbol{y}\right)=\boldsymbol{a}^{\prime} \boldsymbol{\mu}$.
2. $E\left(\boldsymbol{A}^{\prime} \boldsymbol{y}\right)=\boldsymbol{A}^{\prime} \boldsymbol{\mu}$.
3. $\operatorname{Var}\left(\boldsymbol{a}^{\prime} \boldsymbol{y}\right)=\boldsymbol{a}^{\prime} \boldsymbol{V} \boldsymbol{a}$
4. $\operatorname{Var}(\boldsymbol{A} \boldsymbol{y})=\boldsymbol{A} \boldsymbol{V} \boldsymbol{A}^{\prime}$.

Note: If $\boldsymbol{V}=\sigma^{2} \boldsymbol{I}$, then $\operatorname{Var}(\boldsymbol{A} \boldsymbol{y})=\sigma^{2} \boldsymbol{A} \boldsymbol{A}^{\prime}$.
5. $E\left(\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}\right)=\operatorname{trace}(\boldsymbol{A} \boldsymbol{V})+\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{\mu}$.

Note: If $\boldsymbol{V}=\sigma^{2} \boldsymbol{I}$, then $E\left(\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}\right)=\sigma^{2} \operatorname{trace}(\boldsymbol{A})+\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{\mu}$.
Most of the above equations can be easily derived from the definition of expectation and covariance. For equation 5, note that a scalar is always equal to its trace.

## 16. Multivariate Normal Distribution.

A random vector $\boldsymbol{Y}^{\prime}=\left[\begin{array}{llll}Y_{1} & Y_{2} & \cdots & Y_{n}\end{array}\right]$ is said to have a multivariate normal (or Gaussian) distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ if its probability density function is given by

$$
f(\boldsymbol{Y})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{Y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y}-\boldsymbol{\mu})\right)
$$

