STAT 410 - Linear Regression Lecture 9

Meng Li

Department of Statistics

Oct. 12, 2017
, RICE

Assumptions for linear regression models

- Recall the linear regression model with k regressors:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

- Assumptions:
(1) The error term has zero mean, or equivalently, $\mathrm{E}\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}$.
(2) The error term has constant variance.
(3) The errors are uncorrelated.
(4) $\varepsilon_{i} \sim$ Normal.
- We shall examine the model adequacy by analyzing residuals.
- The residual is $e_{i}=y_{i}-\hat{y}_{i}$, or $\mathbf{e}=(\mathbf{I}-\mathbf{H}) \mathbf{y}$ in a matrix form.
- Standardized residuals to remove the scale:

$$
s_{i}=\frac{e_{i}}{\hat{\sigma}}=\frac{e_{i}}{\sqrt{M S_{R e s}}}
$$

- The plain residual and its plots are useful for checking the model assumptions:
- QQ plot
- Residual vs. fitted values
- Residual vs. regressors

QQ plot - the normal assumption

- A quantile-quantile normal plot, or simply QQ plot, plots sample quantiles vs. theoretical quantiles of a standard normal.
- In the ideal case where a sample is i.i.d. from a normal distribution, we expect to see a straight line in its QQ plot.
- QQ plots may help diagnose heavy/light tailed or skewed error distributions.
- Possible solutions to violated normal assumption:
- to cite George Box's quote
- robust regression
- transformation of response
- It is sometimes well behaved even if the errors are not normal.
- We expect to see a random scatter of points around the horizontal axis.
- This is because: under MLR, $\mathbf{e}^{\prime} \hat{\mathbf{y}}=0$; under the normal assumption, e and $\hat{\mathbf{y}}$ are independent.

- (a) Satisfactory; (b) and (c) Heterogeneous variances; (d) Nonlinearity
- Possible solutions: transformation of response/regressor, adding polynomial terms, etc.

Residuals vs. regressors

- It is satisfactory to have a horizontal band containing the residuals without any clear pattern.
- For example, the plots below exhibit a pattern of autocorrelation.

- (a) Positively correlated errors; (b) Negatively correlated errors.
- Possible solutions: to build a time series model that specifically addresses the autocorrelation.

