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ANOVA in MLR

We first obtain SSRes = y′y− β̂ββ
′
X′y = y′(I−H)y.

Facts: e′X = 0 and e′ŷ = 0 (Geometric interpretation of LS
estimators)

SST = y′y−nȳ2 = y′
(
I− 1

n 11′
)

y, where 1 = (1, . . . ,1)′ is a
n×1 vector.
Thus, SSR = β̂ββ

′
X′y−nȳ2 = y′

(
H− 1

n 11′
)

y.
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Method of extra-sum-of-squares

The extra-sum-of-squares method allows to investigate the
contribution of a single and a subset of the regressor
variables to the model.
Recall the multiple linear regression model with k
regressors: y = Xβββ + εεε, where βββ is p×1 and p = k+1.
Let βββ = (βββ ′1,βββ

′
2)
′ where βββ 1 is (p− r)×1 and βββ 2 is r×1

We wish to test

H0 : βββ 2 = 0 vs. H1 : βββ 2 6= 0. (1)

Under H0, the model reduces to y = Xβββ 1 + εεε (this is the
reduced model vs. the full model)
In the ANOVA table, what are SSR and SSRes under both the
full and reduced model?
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The regression sum of squares due to βββ 2 given that βββ 1 is
already in the model

SSR(βββ 2|βββ 1) = SSR(βββ )−SSR(βββ 1) = β̂ββ
′
X′y− β̂ββ

′
1X′1y.

The degrees of freedom of SSR(βββ 2|βββ 1) is

k− (k− r) = r.

Under the full model, we have

MSRes =
y′y− β̂ββ

′
X′y

n−p
.

This leads to the F test:

F0 =
SSR(βββ 2|βββ 1)/r

MSRes
∼ Fr,n−p.

It is sometimes called a partial F test because it measures
the contribution of X2 given X1 were already in the model.
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A special case when r = 1

Consider three regressors: y = β0 +β1x1 +β2x2 +β3x3 + ε,
and the three sums of squares

SSR(β1|β0,β2,β3), SSR(β2|β0,β1,β3), SSR(β3|β0,β1,β2).

Each measures the contribution of xj as if it were the last
variable added to the model.
Degrees of freedom: one
In general, we can assess the value of adding xj to a model
that did not include this regressor by using

SSR(βj|β0,β1, . . . ,βj−1,βj+1, . . . ,βk), 1≤ j≤ k.

Partial F test provides a useful tool in model building
when many regressors are available and we would like to
find the best set of regressors for the model in use.
We can show that this partial F test in this case is
equivalent to the t test for H0 : βj = 0 vs. H1 : βj 6= 0.
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More properties of SS

Let βββ 2 = (β1, . . . ,βk)
′ and βββ 1 = β0, we then have

SSR(βββ 2|βββ 1) = SSR(β1, . . . ,βk|β0) = SST −SSRes.

Sequential decomposition of SS:

SSR(β1,β2,β3|β0)

= SSR(β1|β0)+SSR(β2|β1,β0)+SSR(β3|β1,β2,β0).

The decomposition above is invariant to a permutation of
(β1,β2,β3), e.g.,

SSR(β1,β2,β3|β0) = SSR(β3,β2,β1|β0)

= SSR(β3|β0)+SSR(β2|β3,β0)+SSR(β1|β2,β3,β0).

But in general,

SSR(β1,β2,β3|β0)

6= SSR(β1|β0,β2,β3)+SSR(β2|β0,β1,β3)+SSR(β3|β0,β1,β2).
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Testing General Linear Hypotheses

Under the MLR model: y = Xβββ + εεε, suppose we are
interested in testing the hypotheses:

H0 : Tβββ = 0 vs. H1 : Tβββ 6= 0,

where T is an r×p matrix.
Without loss of generality, we assume rows of T are
linearly independent and r ≤ p (thus the rank of T is r).
In the same spirit of sums of squares from ANOVA, we
conduct a test statistic by

SSH = SSR(Full model)−SSR(Reduced model)
= SSRes(Reduced model)−SSRes(Full model).

Specifically, we use

F0 =
SSH/r

SSRes(Full model)/(n−p)
∼ Fr,n−p(Under H0).
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Under the full model, we have SSRes = y′y− β̂ββ
′
X′y which

has (n−p) degrees of freedom.
Under the reduced model where Tβββ = 0, we first solve for r
regression coefficients in terms of the remaining p− r
regression coefficients, leading to

y = Zγ + εεε,

where Z is an n× (p− r) matrix and γ is a (p− r)×1 vector.
The estimate of γ is γ̂ = (Z′Z)−1Z′y.
The residual SS is SSRes(Reduced model) = y′y− γ̂ ′Z′y
which has (n−p+ r) degrees of freedom.
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Examples for obtain the reduced model

Consider the model y = β0 +β1x1 +β2x2 +β3x3 + ε.
Example 1: we let T = (0,1,0,−1).

Tβββ = 0 means that β1−β3 = 0 or β3 = β1.
The reduced model becomes

y = β0 +β1x1 +β2x2 +β1x3 + ε

= β0 +β1(x1 + x3)+β2x2 + ε

= γ0 + γ1z1 + γ2z2 + ε.

Example 2: we let

T =

(
0 1 0 −1
0 0 1 0

)
Tβββ = 0 means that β3 = β1 and β2 = 0.
The reduced model becomes

y = β0 +β1x1 +β1x3 + ε

= β0 +β1(x1 + x3)+ ε

= γ0 + γ1z1 + ε.
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An alternative approach

Motivated by the t test, we consider

H0 : Tβββ = c vs. H1 : Tβββ =6= c.

Under H0,
we have Tβ̂ββ − c∼MVN(0,σ2T(X′X)−1T′); (Why?)
It follows that

(Tβ̂ββ − c)′[T(X′X)−1T′)]−1(Tβ̂ββ − c)∼ χ
2
r .

Therefore, we propose to use the test statistic

F0 =
(Tβ̂ββ − c)′[T(X′X)−1T′)]−1(Tβ̂ββ − c)/r

SSRes(Full model)/(n−p)
, (2)

which follows Fr,n−p under H0.
The numerator of Equation (2) measures the squared
distance between Tβββ and c standardized by the
covariance matrix of Tβ̂ββ .
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Simultaneous Confidence Interval

A 100(1 - α)% simultaneous confidence interval covers a
set of parameters simultaneously with probability 1 - α. We
usually refer to it as joint confidence interval/region.
It is still derived based on a pivotal quantity.

A pivotal quantity depends on both parameters of interest
and data;
The sampling distribution of a pivotal quantity does not
depend on the parameters and is completely known.

We here use
(β̂ββ −βββ )′(X′X)(β̂ββ −βββ )/p

MSRes

as the pivotal quantity, which follows Fp,n−p.
Thus a 100(1 - α)% joint confidence region for βββ is

{βββ :
(β̂ββ −βββ )′(X′X)(β̂ββ −βββ )/p

MSRes
≤ Fα,p,n−p}. (3)
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It is possible to combine individual confidence intervals to
obtain a joint confidence region for βββ by using the
Bonferroni method:

{βββ : βj ∈ [β̂j− tα/(2p),n−pse(β̂j), β̂j + tα/(2p),n−pse(β̂j)]},

where the individual Bonferroni interval has a confidence
coefficient (1−α/p) instead of (1−α).
Similarly to Equation (3), a 100(1 - α)% joint confidence
region for γ = Tβββ is{

γ :
(Tβ̂ββ − γ)′[T(X′X)−1T′)]−1(Tβ̂ββ − γ)/r

MSRes
≤ Fα,r,n−p

}
.

12 / 12


