STAT 410 - Linear Regression Lecture 8

Meng Li

Department of Statistics

Sep. 28, 2017

ANOVA in MLR

- We first obtain $S S_{\text {Res }}=\mathbf{y}^{\prime} \mathbf{y}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y}$.
- Facts: $\mathbf{e}^{\prime} \mathbf{X}=\mathbf{0}$ and $\mathbf{e}^{\prime} \hat{\mathbf{y}}=0$ (Geometric interpretation of LS estimators)
- $S S_{T}=\mathbf{y}^{\prime} \mathbf{y}-n \bar{y}^{2}=\mathbf{y}^{\prime}\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \mathbf{y}$, where $\mathbf{1}=(1, \ldots, 1)^{\prime}$ is a $n \times 1$ vector.
- Thus, $S S_{R}=\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}-n \bar{y}^{2}=\mathbf{y}^{\prime}\left(\mathbf{H}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \mathbf{y}$.

Method of extra-sum-of-squares

- The extra-sum-of-squares method allows to investigate the contribution of a single and a subset of the regressor variables to the model.
- Recall the multiple linear regression model with k regressors: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where $\boldsymbol{\beta}$ is $p \times 1$ and $p=k+1$.
- Let $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{2}^{\prime}\right)^{\prime}$ where $\boldsymbol{\beta}_{1}$ is $(p-r) \times 1$ and $\boldsymbol{\beta}_{2}$ is $r \times 1$
- We wish to test

$$
\begin{equation*}
H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0} \quad \text { vs. } \quad H_{1}: \boldsymbol{\beta}_{2} \neq \mathbf{0} . \tag{1}
\end{equation*}
$$

- Under H_{0}, the model reduces to $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}$ (this is the reduced model vs. the full model)
- In the ANOVA table, what are $S S_{R}$ and $S S_{\text {Res }}$ under both the full and reduced model?
- The regression sum of squares due to $\boldsymbol{\beta}_{2}$ given that $\boldsymbol{\beta}_{1}$ is already in the model

$$
S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{1}\right)=\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}-\hat{\boldsymbol{\beta}}_{1}^{\prime} \mathbf{X}_{1}^{\prime} \mathbf{y} .
$$

- The degrees of freedom of $S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)$ is

$$
k-(k-r)=r .
$$

- Under the full model, we have

$$
M S_{R e s}=\frac{\mathbf{y}^{\prime} \mathbf{y}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}}{n-p} .
$$

- This leads to the F test:

$$
F_{0}=\frac{S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right) / r}{M S_{\text {Res }}} \sim F_{r, n-p} .
$$

- It is sometimes called a partial F test because it measures the contribution of \mathbf{X}_{2} given \mathbf{X}_{1} were already in the model.

A special case when $r=1$

- Consider three regressors: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\varepsilon$, and the three sums of squares

$$
S S_{R}\left(\beta_{1} \mid \beta_{0}, \beta_{2}, \beta_{3}\right), \quad S S_{R}\left(\beta_{2} \mid \beta_{0}, \beta_{1}, \beta_{3}\right), \quad S S_{R}\left(\beta_{3} \mid \beta_{0}, \beta_{1}, \beta_{2}\right)
$$

- Each measures the contribution of x_{j} as if it were the last variable added to the model.
- Degrees of freedom: one
- In general, we can assess the value of adding x_{j} to a model that did not include this regressor by using

$$
S S_{R}\left(\beta_{j} \mid \beta_{0}, \beta_{1}, \ldots, \beta_{j-1}, \beta_{j+1}, \ldots, \beta_{k}\right), \quad 1 \leq j \leq k .
$$

- Partial F test provides a useful tool in model building when many regressors are available and we would like to find the best set of regressors for the model in use.
- We can show that this partial F test in this case is equivalent to the t test for $H_{0}: \beta_{j}=0$ vs. $H_{1}: \beta_{j} \neq 0$.

More properties of SS

- Let $\boldsymbol{\beta}_{2}=\left(\beta_{1}, \ldots, \boldsymbol{\beta}_{k}\right)^{\prime}$ and $\boldsymbol{\beta}_{1}=\beta_{0}$, we then have

$$
S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R}\left(\beta_{1}, \ldots, \beta_{k} \mid \beta_{0}\right)=S S_{T}-S S_{\text {Res }}
$$

- Sequential decomposition of SS:

$$
\begin{aligned}
& S S_{R}\left(\beta_{1}, \beta_{2}, \beta_{3} \mid \beta_{0}\right) \\
& =S S_{R}\left(\beta_{1} \mid \beta_{0}\right)+S S_{R}\left(\beta_{2} \mid \beta_{1}, \beta_{0}\right)+S S_{R}\left(\beta_{3} \mid \beta_{1}, \beta_{2}, \beta_{0}\right)
\end{aligned}
$$

- The decomposition above is invariant to a permutation of $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$, e.g.,

$$
\begin{aligned}
& S S_{R}\left(\beta_{1}, \beta_{2}, \beta_{3} \mid \beta_{0}\right)=S S_{R}\left(\beta_{3}, \beta_{2}, \beta_{1} \mid \beta_{0}\right) \\
& =S S_{R}\left(\beta_{3} \mid \beta_{0}\right)+S S_{R}\left(\beta_{2} \mid \beta_{3}, \beta_{0}\right)+S S_{R}\left(\beta_{1} \mid \beta_{2}, \beta_{3}, \beta_{0}\right)
\end{aligned}
$$

- But in general,

$$
\begin{aligned}
& S S_{R}\left(\beta_{1}, \beta_{2}, \beta_{3} \mid \beta_{0}\right) \\
& \neq S S_{R}\left(\beta_{1} \mid \beta_{0}, \beta_{2}, \beta_{3}\right)+S S_{R}\left(\beta_{2} \mid \beta_{0}, \beta_{1}, \beta_{3}\right)+S S_{R}\left(\beta_{3} \mid \beta_{0}, \beta_{1}, \beta_{2}\right)
\end{aligned}
$$

Testing General Linear Hypotheses

- Under the MLR model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, suppose we are interested in testing the hypotheses:

$$
H_{0}: \mathbf{T} \boldsymbol{\beta}=\mathbf{0} \text { vs. } H_{1}: \mathbf{T} \boldsymbol{\beta} \neq \mathbf{0}
$$

where \mathbf{T} is an $r \times p$ matrix.

- Without loss of generality, we assume rows of \mathbf{T} are linearly independent and $r \leq p$ (thus the rank of \mathbf{T} is r).
- In the same spirit of sums of squares from ANOVA, we conduct a test statistic by

$$
\begin{aligned}
S S_{H} & =S S_{R}(\text { Full model })-S S_{R}(\text { Reduced model }) \\
& =S S_{R e s}(\text { Reduced model })-S S_{\text {Res }}(\text { Full model }) .
\end{aligned}
$$

- Specifically, we use

$$
F_{0}=\frac{S S_{H} / r}{S S_{\text {Res }}(\text { Full model }) /(n-p)} \sim F_{r, n-p}\left(\text { Under } H_{0}\right)
$$

- Under the full model, we have $S S_{\text {Res }}=\mathbf{y}^{\prime} \mathbf{y}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}$ which has $(n-p)$ degrees of freedom.
- Under the reduced model where $\mathbf{T} \boldsymbol{\beta}=\mathbf{0}$, we first solve for r regression coefficients in terms of the remaining $p-r$ regression coefficients, leading to

$$
\mathbf{y}=\mathbf{Z} \gamma+\boldsymbol{\varepsilon}
$$

where \mathbf{Z} is an $n \times(p-r)$ matrix and γ is a $(p-r) \times 1$ vector.

- The estimate of γ is $\hat{\gamma}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$.
- The residual SS is $S S_{\text {Res }}($ Reduced model $)=\mathbf{y}^{\prime} \mathbf{y}-\hat{\gamma}^{\prime} \mathbf{Z}^{\prime} \mathbf{y}$ which has $(n-p+r)$ degrees of freedom.

Examples for obtain the reduced model

- Consider the model $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\varepsilon$.
- Example 1: we let $\mathbf{T}=(0,1,0,-1)$.
- $\mathbf{T} \boldsymbol{\beta}=\mathbf{0}$ means that $\beta_{1}-\beta_{3}=0$ or $\beta_{3}=\beta_{1}$.
- The reduced model becomes

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{1} x_{3}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(x_{1}+x_{3}\right)+\beta_{2} x_{2}+\varepsilon \\
& =\gamma_{0}+\gamma_{1} z_{1}+\gamma_{2} z_{2}+\varepsilon .
\end{aligned}
$$

- Example 2: we let

$$
\mathbf{T}=\left(\begin{array}{cccc}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- $\mathbf{T} \boldsymbol{\beta}=\mathbf{0}$ means that $\beta_{3}=\beta_{1}$ and $\beta_{2}=0$.
- The reduced model becomes

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{1} x_{3}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(x_{1}+x_{3}\right)+\varepsilon \\
& =\gamma_{0}+\gamma_{1} z_{1}+\varepsilon .
\end{aligned}
$$

An alternative approach

- Motivated by the t test, we consider

$$
H_{0}: \mathbf{T} \boldsymbol{\beta}=\mathbf{c} \quad \text { vs. } \quad H_{1}: \mathbf{T} \boldsymbol{\beta}=\neq \mathbf{c}
$$

- Under H_{0},
- we have T $\hat{\boldsymbol{\beta}}-\mathbf{c} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma^{2} \mathbf{T}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}^{\prime}\right)$; (Why?)
- It follows that

$$
\left.(\mathbf{T} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left[\mathbf{T}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}^{\prime}\right)\right]^{-1}(\mathbf{T} \hat{\boldsymbol{\beta}}-\mathbf{c}) \sim \chi_{r}^{2} .
$$

- Therefore, we propose to use the test statistic

$$
\begin{equation*}
F_{0}=\frac{\left.(\mathbf{T} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left[\mathbf{T}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}^{\prime}\right)\right]^{-1}(\mathbf{T} \hat{\boldsymbol{\beta}}-\mathbf{c}) / r}{S S_{\text {Res }}(\text { Full model }) /(n-p)} \tag{2}
\end{equation*}
$$

which follows $F_{r, n-p}$ under H_{0}.

- The numerator of Equation (2) measures the squared distance between $\mathbf{T} \boldsymbol{\beta}$ and \mathbf{c} standardized by the covariance matrix of $\mathbf{T} \hat{\boldsymbol{\beta}}$.
- A 100(1- α) \% simultaneous confidence interval covers a set of parameters simultaneously with probability $1-\alpha$. We usually refer to it as joint confidence interval/region.
- It is still derived based on a pivotal quantity.
- A pivotal quantity depends on both parameters of interest and data;
- The sampling distribution of a pivotal quantity does not depend on the parameters and is completely known.
- We here use

$$
\frac{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) / p}{M S_{\text {Res }}}
$$

as the pivotal quantity, which follows $F_{p, n-p}$.

- Thus a $100(1-\alpha) \%$ joint confidence region for $\boldsymbol{\beta}$ is

$$
\begin{equation*}
\left\{\boldsymbol{\beta}: \frac{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) / p}{M S_{\text {Res }}} \leq F_{\alpha, p, n-p}\right\} . \tag{3}
\end{equation*}
$$

- It is possible to combine individual confidence intervals to obtain a joint confidence region for $\boldsymbol{\beta}$ by using the Bonferroni method:

$$
\left\{\boldsymbol{\beta}: \beta_{j} \in\left[\hat{\beta}_{j}-t_{\alpha /(2 p), n-p} s e\left(\hat{\beta}_{j}\right), \hat{\beta}_{j}+t_{\alpha /(2 p), n-p} s e\left(\hat{\beta}_{j}\right)\right]\right\}
$$

where the individual Bonferroni interval has a confidence coefficient $(1-\alpha / p)$ instead of $(1-\alpha)$.

- Similarly to Equation (3), a 100(1- α)\% joint confidence region for $\gamma=\mathbf{T} \boldsymbol{\beta}$ is

$$
\left\{\gamma: \frac{\left.(\mathbf{T} \hat{\boldsymbol{\beta}}-\gamma)^{\prime}\left[\mathbf{T}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}^{\prime}\right)\right]^{-1}(\mathbf{T} \hat{\boldsymbol{\beta}}-\gamma) / r}{M S_{R e s}} \leq F_{\alpha, r, n-p}\right\}
$$

