# STAT 410 - Linear Regression Lecture 7

#### Meng Li

Department of Statistics

Sep. 26, 2017



### ANOVA

- We have covered marginal tests and confidence intervals for β in multiple linear regression.
- How to conduct a test for all β at significance level α, for example, the significance test of regression

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$
 vs.  $H_1:$  not  $H_0?$ 

- Possible solution: test each  $H_0^j$ :  $\beta_j = 0$  at  $\alpha$  separately and reject  $H_0$  if we reject any of  $H_0^j$ .
- Analysis of variance (ANOVA) provides a general technique to compare multiple population means, and particularly can be used to test significance of regression.

## ANOVA in SLR

• Starting with the identity  $y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$ , we have

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})]^2$$
$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2 \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i) (\hat{y}_i - \bar{y})}_{=0 \text{ (Fact)}}$$

• Therefore, we obtain

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2.$$

- SS<sub>T</sub> = ∑<sup>n</sup><sub>i=1</sub> (y<sub>i</sub> − ȳ)<sup>2</sup> measures the total variability in the observations thus is called the corrected sum of squares of the observations.
- $SS_R = \sum_{i=1}^n (\hat{y}_i \bar{y})^2$  measures to amount of variability in the observations accounted for by the regression line thus is called the **regression or model sum of squares**.

• In SLR, we have  $SS_R = \hat{\beta}_1 S_{xy}$ .

- SS<sub>Res</sub> = ∑<sup>n</sup><sub>i=1</sub> (y<sub>i</sub> − ŷ<sub>i</sub>)<sup>2</sup> is the residual or error sum of squares, which measures the residual variation left unexplained by the regression line.
- Using the notation, ANOVA decomposition becomes

$$SS_T = SS_R + SS_{Res}$$
.

## **Coefficient of Determination**

• Coefficient of Determination (*R*<sup>2</sup>):

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}$$

- *R*<sup>2</sup> is the proportion of variation explained by the regressor(s).
- Because  $0 \leq SS_{Res} \leq SS_T$ , it follows that

$$0\leq R^2\leq 1.$$

- Values of R<sup>2</sup> that are close to 1 imply that most of the variability in observations is explained by the regression model.
- In single linear regression, we have R<sup>2</sup> = r<sup>2</sup>, where r is the correlation coefficient between (y<sub>1</sub>,...,y<sub>n</sub>) and (x<sub>1</sub>,...,x<sub>n</sub>):

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

| Source of | SS         | df  | MS         | E(MS)                         | $F_0$           |
|-----------|------------|-----|------------|-------------------------------|-----------------|
| Variation |            |     |            |                               |                 |
|           | $SS_R$     | 1   | $MS_R$     | $\sigma^2 + \beta_1^2 S_{xx}$ | $MS_R/MS_{Res}$ |
| Residual  | $SS_{Res}$ | n-2 | $MS_{Res}$ | $\sigma^2$                    |                 |
| Total     | $SS_T$     | n-1 |            |                               |                 |

• How to obtain each block in the ANOVA table above?

#### F test

- The column of E(MS) in the ANOVA table inspires an alternative test for H<sub>0</sub> : β<sub>1</sub> = 0 vs. H<sub>1</sub> : β<sub>1</sub> ≠ 0.
- Test statistic:

$$F_0 = \frac{\mathsf{MS}_R}{\mathsf{MS}_{Res}} = \frac{SS_R / 1}{SS_{Res} / (n-2)} \sim F(1, n-2).$$

 The ratio of two independent χ<sup>2</sup> random variables is distributed as an *F* distribution:

$$\frac{\chi_{\nu_1}^2/\nu_1}{\chi_{\nu_2}^2/\nu_2} \sim F_{\nu_1,\nu_2}.$$

Under normal assumptions in SLR, we have

$$SS_R \perp SS_{Res}, \quad \frac{SS_R}{\sigma^2} \sim \chi_1^2, \quad \frac{SS_{Res}}{\sigma^2} \sim \chi_{n-2}^2.$$

• Reject  $H_0$  if  $F_0 > F_{\alpha,1,n-2}$ .

Recall the t test:

$$t_0 = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{\sqrt{MS_{Res}/S_{xx}}}$$

It leads to

$$t_0^2 = \frac{\hat{\beta}_1^2}{MS_{Res}/S_{xx}} = \frac{\hat{\beta}_1 S_{xy}}{MS_{Res}} = \frac{MS_R}{MS_{Res}} = F_0.$$

- Thus  $t_0^2$  is identical to  $F_0$  in the ANOVA approach.
- In general, if  $Z \sim t_m$ , then  $Z^2 \sim F_{1,m}$ .
- Consequently, the *t* test is equivalent to the *F* test for  $H_0: \beta_1 = 0$  vs.  $H_1: \beta_1 \neq 0$ .
- However, F tests consider only the two-sided alternative while t tests are also applicable for one-sided alternatives.

| Source of  | SS         | df    | MS         | E(MS)                                                                                                   | $F_0$           |
|------------|------------|-------|------------|---------------------------------------------------------------------------------------------------------|-----------------|
| Variation  |            |       |            |                                                                                                         |                 |
| Regression | $SS_R$     | k     | $MS_R$     | $\sigma^2 + rac{oldsymbol{eta}^* \mathbf{X}'_c \mathbf{X}_c oldsymbol{eta}^*}{{\sigma^2}^{k\sigma^2}}$ | $MS_R/MS_{Res}$ |
| Residual   | $SS_{Res}$ | n-k-1 | $MS_{Res}$ | $\sigma^{2}$                                                                                            |                 |
| Total      | $SS_T$     | n-1   |            |                                                                                                         |                 |

Hypothesis testing of interest:

$$H_0: \beta_1 = \cdots = \beta_k = 0$$
 vs.  $H_1:$  not  $H_0$ 

F test:

$$F_0 = \frac{SS_R/k}{SS_{Res}/(n-k-1)} = \frac{MS_R}{MS_{Res}}.$$

- Under  $H_0$ , we have  $F_0 \sim F_{k,n-k-1}$ .
- Reject  $H_0$  if  $F_0 > F_{\alpha,k,n-k-1}$ .