STAT 410 - Linear Regression Lecture 7

Meng Li

Department of Statistics

Sep. 26, 2017

ANOVA

- We have covered marginal tests and confidence intervals for $\boldsymbol{\beta}$ in multiple linear regression.
- How to conduct a test for all $\boldsymbol{\beta}$ at significance level α, for example, the significance test of regression

$$
H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0 \quad \text { vs. } \quad H_{1}: \text { not } H_{0} ?
$$

- Possible solution: test each $H_{0}^{j}: \beta_{j}=0$ at α separately and reject H_{0} if we reject any of H_{0}^{j}.
- Analysis of variance (ANOVA) provides a general technique to compare multiple population means, and particularly can be used to test significance of regression.

ANOVA in SLR

- Starting with the identity $y_{i}-\bar{y}=\left(y_{i}-\hat{y}_{i}\right)+\left(\hat{y}_{i}-\bar{y}\right)$, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left[\left(y_{i}-\hat{y}_{i}\right)+\left(\hat{y}_{i}-\bar{y}\right)\right]^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\underbrace{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)}_{=0 \text { (Fact) }}
\end{aligned}
$$

- Therefore, we obtain

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} .
$$

- $S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ measures the total variability in the observations thus is called the corrected sum of squares of the observations.
- $S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ measures to amount of variability in the observations accounted for by the regression line thus is called the regression or model sum of squares.
- In SLR, we have $S S_{R}=\hat{\beta}_{1} S_{x y}$.
- $S S_{\text {Res }}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ is the residual or error sum of squares, which measures the residual variation left unexplained by the regression line.
- Using the notation, ANOVA decomposition becomes

$$
S S_{T}=S S_{R}+S S_{R e s}
$$

Coefficient of Determination

- Coefficient of Determination $\left(R^{2}\right)$:

$$
R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{R e s}}{S S_{T}}
$$

- R^{2} is the proportion of variation explained by the regressor(s).
- Because $0 \leq S S_{\text {Res }} \leq S S_{T}$, it follows that

$$
0 \leq R^{2} \leq 1 .
$$

- Values of R^{2} that are close to 1 imply that most of the variability in observations is explained by the regression model.
- In single linear regression, we have $R^{2}=r^{2}$, where r is the correlation coefficient between $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$:

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

ANOVA table

Source of Variation	SS	df	MS	$\mathrm{E}(\mathrm{MS})$	F_{0}
Regression	$S S_{R}$	1	$M S_{R}$	$\sigma^{2}+\beta_{1}^{2} S_{x x}$	$M S_{R} / M S_{\text {Res }}$
Residual	$S S_{\text {Res }}$	$n-2$	$M S_{\text {Res }}$	σ^{2}	
Total	$S S_{T}$	$n-1$			

- How to obtain each block in the ANOVA table above?
- The column of $\mathrm{E}(\mathrm{MS})$ in the ANOVA table inspires an alternative test for $H_{0}: \beta_{1}=0$ vs. $H_{1}: \beta_{1} \neq 0$.
- Test statistic:

$$
F_{0}=\frac{\mathrm{MS}_{R}}{\mathrm{MS}_{\text {Res }}}=\frac{S S_{R} / 1}{S S_{\text {Res }} /(n-2)} \sim F(1, n-2) .
$$

- The ratio of two independent χ^{2} random variables is distributed as an F distribution:

$$
\frac{\chi_{v_{1}}^{2} / v_{1}}{\chi_{v_{2}}^{2} / v_{2}} \sim F_{v_{1}, v_{2}} .
$$

- Under normal assumptions in SLR, we have

$$
S S_{R} \amalg S S_{R e s}, \quad \frac{S S_{R}}{\sigma^{2}} \sim \chi_{1}^{2}, \quad \frac{S S_{R e s}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

- Reject H_{0} if $F_{0}>F_{\alpha, 1, n-2}$.
- Recall the t test:

$$
t_{0}=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}}{\sqrt{M S_{\text {Res }} / S_{x x}}}
$$

- It leads to

$$
t_{0}^{2}=\frac{\hat{\beta}_{1}^{2}}{M S_{\text {Res }} / S_{x x}}=\frac{\hat{\beta}_{1} S_{x y}}{M S_{\text {Res }}}=\frac{M S_{R}}{M S_{\text {Res }}}=F_{0}
$$

- Thus t_{0}^{2} is identical to F_{0} in the ANOVA approach.
- In general, if $Z \sim t_{m}$, then $Z^{2} \sim F_{1, m}$.
- Consequently, the t test is equivalent to the F test for $H_{0}: \beta_{1}=0$ vs. $H_{1}: \beta_{1} \neq 0$.
- However, F tests consider only the two-sided alternative while t tests are also applicable for one-sided alternatives.

ANOVA in MLR

Source of Variation	SS	df	MS	$\mathrm{E}(\mathrm{MS})$	F_{0}
Regression	$S S_{R}$	k	$M S_{R}$	$\sigma^{2}+\frac{\boldsymbol{\beta}^{*} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \boldsymbol{\beta}^{*}}{k^{2}}$	$M S_{R} / M S_{\text {Res }}$
Residual	$S S_{\text {Res }}$	$n-k-1$	$M S_{\text {Res }}$	σ^{2}	
Total	$S S_{T}$	$n-1$			

- Hypothesis testing of interest:

$$
H_{0}: \beta_{1}=\cdots=\beta_{k}=0 \quad \text { vs. } \quad H_{1}: \text { not } H_{0}
$$

- F test:

$$
F_{0}=\frac{S S_{R} / k}{S S_{R e s} /(n-k-1)}=\frac{M S_{R}}{M S_{R e s}} .
$$

- Under H_{0}, we have $F_{0} \sim F_{k, n-k-1}$.
- Reject H_{0} if $F_{0}>F_{\alpha, k, n-k-1}$.

