# STAT 410 - Linear Regression Lecture 6 

Meng Li

Department of Statistics

Sep.21, 2017

- A random vector $\boldsymbol{Y}=\left[Y_{1}, Y_{2}, \ldots, Y_{p}\right]^{\prime}$ is said to have a multivariate normal (or Gaussian) distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, if its probability density function is given by

$$
f(\boldsymbol{Y})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{Y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y}-\boldsymbol{\mu})\right\}
$$

- Notation: $\boldsymbol{Y} \sim \operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\cdots \\
\mu_{p}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p}^{2}
\end{array}\right] .
$$

- Property: for any (non-singular) matrix $\boldsymbol{A}$ and a vector $\boldsymbol{b}$, the random vector $\boldsymbol{A} \boldsymbol{Y}+\boldsymbol{b} \sim \mathrm{MVN}\left(\boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\prime}\right)$. (Why?)
- This property implies that any linear combination of $\boldsymbol{Y}$ is normally distributed, including any of its marginal distribution.


## Inference in MLR

- In order to allow inference in multiple linear regression, we again assume that $\varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$ as in SLR.
- In other words, we assume $\boldsymbol{\varepsilon} \sim \operatorname{MVN}\left(0, \sigma^{2} \boldsymbol{I}\right)$.
- This implies that the response vector $\mathbf{y} \sim \operatorname{MVN}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$.
- Thus, the LS estimators $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ is a multivariate normal:

$$
\begin{equation*}
\hat{\boldsymbol{\beta}} \sim \operatorname{MVN}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \tag{1}
\end{equation*}
$$

- Let $C_{i j}$ be the $i j$-th entry of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, then

$$
\operatorname{Var}\left(\hat{\beta}_{i}\right)=\sigma^{2} C_{i i}, \quad \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)=\sigma^{2} C_{i j} .
$$

## (Marginal) Hypothesis testing and Confidence interval

- Hypothesis test on any single regression coefficient:

$$
H_{0}: \beta_{j}=0, \quad \text { v.s. } \quad H_{1}: \beta_{j} \neq 0
$$

- Test statistics:

$$
t=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2} C_{j j}}}
$$

- Reject $H_{0}$ if $|t| \geq t_{\alpha / 2, n-k-1}$. or use $p$-value.
- Note: this is a marginal test!
- A $100(1-\alpha)$ percent C.I. for the regression coefficient $\beta_{j}$ is

$$
\hat{\beta}_{j}-t_{\alpha / 2, n-k-1} \operatorname{se}\left(\hat{\beta}_{j}\right) \leq \beta_{j} \leq \hat{\beta}_{j}+t_{\alpha / 2, n-k-1} \operatorname{se}\left(\hat{\beta}_{j}\right)
$$

- Note: this is a marginal confidence interval!


## Confidence interval - continued

- Let $\mathbf{x}_{0}=\left[x_{00}, x_{01}, \ldots, x_{0 k}\right]^{\prime}$ be any point at which we will estimate the mean response $\mu_{0}=\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)$, where $x_{00}=1$ is the intercept term.
- Point estimate: $\hat{\mu}_{0}=\mathbf{x}_{0}^{\prime} \hat{\boldsymbol{\beta}}$
- A $100(1-\alpha)$ percent Cl on the mean response:

$$
\left[\hat{\mu}_{0}-t_{\alpha, n-k-1} \operatorname{se}\left(\hat{\mu}_{0}\right), \hat{\mu}_{0}+t_{\alpha, n-k-1} \operatorname{se}\left(\hat{\mu}_{0}\right)\right],
$$

where $\operatorname{se}\left(\hat{\mu}_{0}\right)=\sqrt{\hat{\sigma}^{2} \mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}}$. (Why?)

- A $100(1-\alpha)$ percent prediction interval for a future observation is

$$
\begin{aligned}
& \hat{y}_{0}-t_{\alpha, n-k-1} \sqrt{\hat{\sigma}^{2}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)} \leq y_{0} \\
& \quad \leq \hat{y}_{0}+t_{\alpha, n-k-1} \sqrt{\hat{\sigma}^{2}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}
\end{aligned}
$$

where $\hat{y}_{0}=\hat{\mu}_{0}=\mathbf{x}_{0}^{\prime} \hat{\boldsymbol{\beta}}$.

