STAT 410 - Linear Regression Lecture 5

Meng Li

Department of Statistics

Sep. 14, 2017

- Suppose that the yield in pounds of conversion in a chemical process depends on temperature x₁ and the catalyst concentration x₂.
- A multiple regression model that might describe this relationship is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon.$$
 (1)

- This is a multiple linear regression model in two variables.
- In general, the multiple linear regression model with k regressors is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon.$$
(2)

Examples of multiple regression models

- Polynomial models: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \varepsilon$
 - It becomes a multiple regression model if we let $x_1 = x, x_2 = x^2, \dots, x_k = x^k$.
- Interaction effects: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$
 - It becomes a multiple regression model if we let x₃ = x₁x₂ and β₃ = β₁₂.
- Nonlinear function with fixed basis expansion: $y = f(x) + \varepsilon$ where $f(x) = \sum_{j=1}^{k} \beta_k \phi_k(x)$.
 - It becomes a multiple regression model if we let $x_k = \phi_k(x)$.
 - There is a rich menu for $\{\phi_k(\cdot) : k \ge 1\}$: wavelet basis, Fourier transformation, orthogonal polynomials, etc.
- In general, any regression model that is linear in the parameters β's is a linear regression model, regardless of the shape of the surface that it generates. (V and P in SVP)

Data and Notation

Observation, i	Response, y	Regressors			
		x_1	x_2		x_k
1	y_1	x_{11}	x_{12}		x_{1k}
2	y_2	x_{21}	x_{22}		x_{2k}
:	÷	÷	÷		÷
n	y_n	x_{n1}	x_{n2}		x_{nk}

Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon.$$
 (3)

• Data: $(y_i; x_{i1}, \ldots, x_{ik})$ as shown in the above table.

- n number of observations available
- k number of regressor variables
- y_i *i*th response or dependent variable
- *x_{ij} i*th observation or level of regressor *j*

Sample regression model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i.$$
(4)

In matrix notation, model (4) becomes

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{5}$$

where

LS estimators

Least-squares estimator:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2.$$

• The loss $S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ can be expressed as $S(\boldsymbol{\beta}) = \mathbf{y}'\mathbf{y} - \boldsymbol{\beta}'\mathbf{X}'\mathbf{y} - \mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$ $= \mathbf{y}'\mathbf{y} - 2\boldsymbol{\beta}'\mathbf{X}'\mathbf{y} + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}.$

- The LS estimator satisfies that $\frac{\partial S}{\partial \beta} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0.$
- This simplifies to

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y},\tag{6}$$

which are the so-called (least-squares) normal equations.

• Thus, the LS estimator of $\boldsymbol{\beta}$ is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},\tag{7}$$

provided that the inverse matrix $(\mathbf{X}'\mathbf{X})^{-1}$ exists.

LS estimators

- The dimension of $(\mathbf{X}'\mathbf{X})$ is (k+1) by (k+1).
- The inverse matrix (X'X)⁻¹ exists if the regressions X are linearly independent, i.e., no column of X is a linear combination of the other columns.
- The vector of fitted values ŷ_i corresponding to the observed values y_i is

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

- The $n \times n$ matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is called the **hat matrix**.
- The residual vector can be conveniently written as

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{H}\mathbf{y} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

Geometric interpretation

- The least squares fit is the **projection** of y onto the span of X (the estimation space), and the residual at the least squares solution is orthogonal to the span of X.
- In the above figure, point *A* denotes y, point *B* is Xβ for any β, and point *C* is the least squares fit Xβ̂.
- The residual $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$ is perpendicular to the span of \mathbf{X} , i.e., $\mathbf{X}'(\mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}) = 0$ or $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$ the normal equations.

Properties of LS estimator

Recall the model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where ε_i is *i.i.d.* from a distribution that has mean 0 and variance σ^2 .

- $\hat{\boldsymbol{\beta}}$ is unbiased, namely, $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$.
- Variance matrix of $\hat{\boldsymbol{\beta}}$: Var $(\hat{\boldsymbol{\beta}}) = E\{(\hat{\boldsymbol{\beta}} E\hat{\boldsymbol{\beta}})'(\hat{\boldsymbol{\beta}} E\hat{\boldsymbol{\beta}})\}$.
- We can obtain that $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$.
- The LS estimator is the best linear unbiased estimator (BLUE) of β (the Gauss Markov theorem).
- If we further assume ε_i 's are normally distributed:
 - MLE is identical to LS estimator.
 - $\hat{\boldsymbol{\beta}}$ follows a **multivariate** normal distribution with mean $\boldsymbol{\beta}$ and covariance $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$.
- Similar to SLR, we estimate the variance component σ^2 by

$$\widehat{\sigma^2} = \frac{SS_{res}}{n-p} = MS_{res},$$

where p = k + 1 is the number of parameters in β .

• $\widehat{\sigma^2}$ is unbiased but is not the MLE.