STAT 410 - Linear Regression Lecture 5

Meng Li

Department of Statistics

Sep. 14, 2017
RICE

Multiple Regression Models

- Suppose that the yield in pounds of conversion in a chemical process depends on temperature x_{1} and the catalyst concentration x_{2}.
- A multiple regression model that might describe this relationship is

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \tag{1}
\end{equation*}
$$

- This is a multiple linear regression model in two variables.
- In general, the multiple linear regression model with k regressors is

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\varepsilon \tag{2}
\end{equation*}
$$

Examples of multiple regression models

- Polynomial models: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}+\varepsilon$
- It becomes a multiple regression model if we let

$$
x_{1}=x, x_{2}=x^{2}, \ldots, x_{k}=x^{k} .
$$

- Interaction effects: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\varepsilon$
- It becomes a multiple regression model if we let $x_{3}=x_{1} x_{2}$ and $\beta_{3}=\beta_{12}$.
- Nonlinear function with fixed basis expansion: $y=f(x)+\varepsilon$ where $f(x)=\sum_{j=1}^{k} \beta_{k} \phi_{k}(x)$.
- It becomes a multiple regression model if we let $x_{k}=\phi_{k}(x)$.
- There is a rich menu for $\left\{\phi_{k}(\cdot): k \geq 1\right\}$: wavelet basis, Fourier transformation, orthogonal polynomials, etc.
- In general, any regression model that is linear in the parameters β 's is a linear regression model, regardless of the shape of the surface that it generates. (V and \mathbf{P} in SVP)

Data and Notation

		Regressors			
Observation, i	Response, y	x_{1}	x_{2}	\ldots	x_{k}
1	y_{1}	x_{11}	x_{12}	\ldots	$x_{1 k}$
2	y_{2}	x_{21}	x_{22}	\ldots	$x_{2 k}$
\vdots	\vdots	\vdots	\vdots		\vdots
n	y_{n}	$x_{n 1}$	$x_{n 2}$	\ldots	$x_{n k}$

- Model:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\varepsilon \tag{3}
\end{equation*}
$$

- Data: $\left(y_{i} ; x_{i 1}, \ldots, x_{i k}\right)$ as shown in the above table.
- n - number of observations available
- k - number of regressor variables
- y_{i} - ith response or dependent variable
- $x_{i j}$ - ith observation or level of regressor j
- Sample regression model:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\varepsilon_{i} . \tag{4}
\end{equation*}
$$

Matrix notation

In matrix notation, model (4) becomes

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{5}
\end{equation*}
$$

where

$$
\mathbf{y}=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{n \times 1}, \mathbf{X}=\underbrace{\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right]}_{n \times(k+1)}, \boldsymbol{\beta}=\underbrace{\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]}_{(k+1) \times 1}, \boldsymbol{\varepsilon}=\underbrace{\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]}_{n \times 1} .
$$

LS estimators

- Least-squares estimator:

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left\{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} .
$$

- The loss $S(\boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$ can be expressed as

$$
\begin{aligned}
S(\boldsymbol{\beta}) & =\mathbf{y}^{\prime} \mathbf{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
& =\mathbf{y}^{\prime} \mathbf{y}-2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} .
\end{aligned}
$$

- The LS estimator satisfies that $\frac{\partial S}{\partial \boldsymbol{\beta}}=-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=0$.
- This simplifies to

$$
\begin{equation*}
\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y} \tag{6}
\end{equation*}
$$

which are the so-called (least-squares) normal equations.

- Thus, the LS estimator of $\boldsymbol{\beta}$ is

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \tag{7}
\end{equation*}
$$

provided that the inverse matrix $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists.

LS estimators

- The dimension of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)$ is $(k+1)$ by $(k+1)$.
- The inverse matrix $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists if the regressions \mathbf{X} are linearly independent, i.e., no column of \mathbf{X} is a linear combination of the other columns.
- The vector of fitted values \hat{y}_{i} corresponding to the observed values y_{i} is

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- The $n \times n$ matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is called the hat matrix.
- The residual vector can be conveniently written as

$$
\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\mathbf{H y}=(\mathbf{I}-\mathbf{H}) \mathbf{y} .
$$

Geometric interpretation

- The least squares fit is the projection of \mathbf{y} onto the span of \mathbf{X} (the estimation space), and the residual at the least squares solution is orthogonal to the span of \mathbf{X}.
- In the above figure, point A denotes \mathbf{y}, point B is $\mathbf{X} \boldsymbol{\beta}$ for any $\boldsymbol{\beta}$, and point C is the least squares fit $\mathbf{X} \hat{\boldsymbol{\beta}}$.
- The residual $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$ is perpendicular to the span of \mathbf{X}, i.e., $\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})=0$ or $\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}$ - the normal equations.

Properties of LS estimator

Recall the model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where ε_{i} is i.i.d. from a distribution that has mean 0 and variance σ^{2}.

- $\hat{\boldsymbol{\beta}}$ is unbiased, namely, $\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}$.
- Variance matrix of $\hat{\boldsymbol{\beta}}: \operatorname{Var}(\hat{\boldsymbol{\beta}})=\mathrm{E}\left\{(\hat{\boldsymbol{\beta}}-\mathrm{E} \hat{\boldsymbol{\beta}})^{\prime}(\hat{\boldsymbol{\beta}}-\mathrm{E} \hat{\boldsymbol{\beta}})\right\}$.
- We can obtain that $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- The LS estimator is the best linear unbiased estimator (BLUE) of $\boldsymbol{\beta}$ (the Gauss - Markov theorem).
- If we further assume ε_{i} 's are normally distributed:
- MLE is identical to LS estimator.
- $\hat{\boldsymbol{\beta}}$ follows a multivariate normal distribution with mean $\boldsymbol{\beta}$ and covariance $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- Similar to SLR, we estimate the variance component σ^{2} by

$$
\widehat{\sigma^{2}}=\frac{S S_{\text {res }}}{n-p}=M S_{\text {res }}
$$

where $p=k+1$ is the number of parameters in $\boldsymbol{\beta}$.

- $\widehat{\sigma^{2}}$ is unbiased but is not the MLE.

