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Multiple Regression Models

o Suppose that the yield in pounds of conversion in a
chemical process depends on temperature x; and the
catalyst concentration x;.

o A multiple regression model that might describe this
relationship is

y=PBo+ Bix1 + PBaxs + €. (1)

o This is a multiple linear regression model in two variables.

o In general, the multiple linear regression model with k
regressors is

y=PBo+Bixi+Boxo+ -+ Prxx + €. (2)



Examples of multiple regression models

o Polynomial models: y = By + Bix+ Box® + - + Bk + €

o It becomes a multiple regression model if we let

X1 =x,x =x%,...x =x~.

o Interaction effects: y = By + Bixi + Boxz + Bioxixo + €
o It becomes a multiple regression model if we let x3 = xjx;
and B = Bia.
@ Nonlinear function with fixed basis expansion: y =f(x) + €
where f(x) = Y5, etk (x).
o It becomes a multiple regression model if we let x; = ¢r(x).
o There is a rich menu for {¢(-) : k > 1}: wavelet basis,
Fourier transformation, orthogonal polynomials, etc.
@ In general, any regression model that is linear in the
parameters B’s is a linear regression model, regardless of
the shape of the surface that it generates. (V and P in SVP)



Data and Notation

Regressors
Observation, i Response, y X X .. Xk
1 Vi X11 X12 ce X1k
2 Y2 Xa1 X2 e Xog
n y/z Xn1 Xn2 e Xnk
o Model:
y=Bo+Bixi +Poxa+ -+ B+ € (3)

o Data: (yi;xii,...,xix) as shown in the above table.
o n— number of observations available
o k— number of regressor variables
o y; — ith response or dependent variable
o x; — ith observation or level of regressor j

o Sample regression model:
yi = Bo+ Bixi + Boxio + - - + Prxix + €. (4)



Matrix notation

In matrix notation, model (4) becomes

y=XB +¢, (5)
where
i I xn xi2 -0 Xk Bo £
» I xo1 x22 oo+ X% Bi &
Y= I X = . . ) ﬁ - . ) €=
Yn 1 X X2 0 Xnk ﬁk En
~—— ~ ~—— ——
nx1 nx(k+1) (k+1)x1 nx1



LS estimators

o Least-squares estimator:

B = argglin{(y—Xﬁ)' (y-XB)} = arg;nin ly —XB|*.

o Theloss S(B) = (y—XB)' (y— XPB) can be expressed as
S(B) =y'y—B'X'y—yXB +B'XXB
=y'y—2B'X'y+B'X'XB.
o The LS estimator satisfies that 3—; = —2X'y+2X'XB =0.
o This simplifies to A
X'XB =Xy, (6)
which are the so-called (least-squares) normal equations.

o Thus, the LS estimator of B is

B = (X'’X)"'Xly, (7)

provided that the inverse matrix (X’X)~! exists.



LS estimators

o The dimension of (X'X) is (k+ 1) by (k+1).

o The inverse matrix (X'X)~! exists if the regressions X are
linearly independent, i.e., no column of X is a linear
combination of the other columns.

o The vector of fitted values §; corresponding to the observed
values y; is .
§=XB = X(X'X)"'Xly.

@ The n x n matrix H = X(X'X) !X’ is called the hat matrix.
o The residual vector can be conveniently written as

e=y—y=y—Hy=(I-H)y.



Geometric interpretation

o The least squares fit is the projection of y onto the span of
X (the estimation space), and the residual at the least
squares solution is orthogonal to the span of X.

@ In the above figure, point A denotes y, point B is XB for any
B, and point C is the least squares fit XB.

o The residual e =y — ¥ is perpendicular to the span of X,
ie, X'(y— XB) 0 or X'XB = X'y — the normal equations.



Properties of LS estimator

Recall the model: y = XB + €, where ¢ is i.i.d. from a
distribution that has mean 0 and variance ¢>.
o B is unbiased, namely, E(B) = B.
o Variance matrix of B: Var(B) = E{(B —EB)'(B —EB)}.
o We can obtain that Var(8) = o2(X'X) .

o The LS estimator is the best linear unbiased estimator
(BLUE) of B (the Gauss - Markov theorem).
o If we further assume g;’s are normally distributed:
o MLE is identical to LS estimator.
o B follows a multivariate normal distribution with mean B
and covariance c?(X'X) 1.

o Similar to SLR, we estimate the variance component o2 by
gz _ SSres
n—p
where p = k+ 1 is the number of parameters in B.

o o2 is unbiased but is not the MLE.

= MSresv



