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Multiple Regression Models

Suppose that the yield in pounds of conversion in a
chemical process depends on temperature x1 and the
catalyst concentration x2.
A multiple regression model that might describe this
relationship is

y = β0 +β1x1 +β2x2 + ε. (1)

This is a multiple linear regression model in two variables.
In general, the multiple linear regression model with k
regressors is

y = β0 +β1x1 +β2x2 + · · ·+βkxk + ε. (2)
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Examples of multiple regression models

Polynomial models: y = β0 +β1x+β2x2 + · · ·+βkxk + ε

It becomes a multiple regression model if we let
x1 = x,x2 = x2, . . . ,xk = xk.

Interaction effects: y = β0 +β1x1 +β2x2 +β12x1x2 + ε

It becomes a multiple regression model if we let x3 = x1x2
and β3 = β12.

Nonlinear function with fixed basis expansion: y = f (x)+ ε

where f (x) = ∑
k
j=1 βkφk(x).

It becomes a multiple regression model if we let xk = φk(x).
There is a rich menu for {φk(·) : k ≥ 1}: wavelet basis,
Fourier transformation, orthogonal polynomials, etc.

In general, any regression model that is linear in the
parameters β ’s is a linear regression model, regardless of
the shape of the surface that it generates. (V and P in SVP)
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Data and Notation

Model:
y = β0 +β1x1 +β2x2 + · · ·+βkxk + ε. (3)

Data: (yi;xi1, . . . ,xik) as shown in the above table.
n — number of observations available
k — number of regressor variables
yi — ith response or dependent variable
xij — ith observation or level of regressor j

Sample regression model:

yi = β0 +β1xi1 +β2xi2 + · · ·+βkxik + εi. (4)
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Matrix notation

In matrix notation, model (4) becomes

y = Xβββ + εεε, (5)

where

y =


y1
y2
...

yn


︸ ︷︷ ︸

n×1

, X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

...
...

1 xn1 xn2 · · · xnk


︸ ︷︷ ︸

n×(k+1)

, βββ =


β0
β1
...

βk


︸ ︷︷ ︸
(k+1)×1

, εεε =


ε1
ε2
...

εn


︸ ︷︷ ︸

n×1

.
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LS estimators

Least-squares estimator:

β̂ββ = argmin
βββ

{
(y−Xβββ )′ (y−Xβββ )

}
= argmin

βββ

‖y−Xβββ‖2 .

The loss S(βββ ) = (y−Xβββ )′ (y−Xβββ ) can be expressed as

S(βββ ) = y′y−βββ
′X′y−y′Xβββ +βββ

′X′Xβββ

= y′y−2βββ
′X′y+βββ

′X′Xβββ .

The LS estimator satisfies that ∂S
∂βββ

=−2X′y+2X′Xβββ = 0.
This simplifies to

X′Xβ̂ββ = X′y, (6)

which are the so-called (least-squares) normal equations.
Thus, the LS estimator of βββ is

β̂ββ = (X′X)−1X′y, (7)

provided that the inverse matrix (X′X)−1 exists.
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LS estimators

The dimension of (X′X) is (k+1) by (k+1).
The inverse matrix (X′X)−1 exists if the regressions X are
linearly independent, i.e., no column of X is a linear
combination of the other columns.
The vector of fitted values ŷi corresponding to the observed
values yi is

ŷ = Xβ̂ββ = X(X′X)−1X′y.

The n×n matrix H = X(X′X)−1X′ is called the hat matrix.
The residual vector can be conveniently written as

e = y− ŷ = y−Hy = (I−H)y.
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Geometric interpretation

The least squares fit is the projection of y onto the span of
X (the estimation space), and the residual at the least
squares solution is orthogonal to the span of X.
In the above figure, point A denotes y, point B is Xβββ for any
βββ , and point C is the least squares fit Xβ̂ββ .
The residual e = y− ŷ is perpendicular to the span of X,
i.e., X′(y−Xβ̂ββ ) = 0 or X′Xβ̂ββ = X′y — the normal equations.
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Properties of LS estimator

Recall the model: y = Xβββ + εεε, where εi is i.i.d. from a
distribution that has mean 0 and variance σ2.

β̂ββ is unbiased, namely, E(β̂ββ ) = βββ .

Variance matrix of β̂ββ : Var(β̂ββ ) = E{(β̂ββ −Eβ̂ββ )′(β̂ββ −Eβ̂ββ )}.
We can obtain that Var(β̂ββ ) = σ2(X′X)−1.
The LS estimator is the best linear unbiased estimator
(BLUE) of βββ (the Gauss - Markov theorem).
If we further assume εi’s are normally distributed:

MLE is identical to LS estimator.
β̂ββ follows a multivariate normal distribution with mean βββ

and covariance σ2(X′X)−1.
Similar to SLR, we estimate the variance component σ2 by

σ̂2 =
SSres

n−p
= MSres,

where p = k+1 is the number of parameters in βββ .
σ̂2 is unbiased but is not the MLE.
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