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Simple linear regression model

Simple linear regression model:

y = β0 +β1x+ ε, (1)

where ε has mean 0 and σ2 < ∞.
Question: terminology associated with x,y,β0,β1.
SLR implies

E(y|x) = β0 +β1x, Var(y|x) = σ
2.

Thus, given x, the mean of y is a linear function of x but the
variance of y does not depend on x.
Interpretation of β1: change in the mean of the distribution
of y produced by a unit change in x.
Interpretation of β0: the mean of the distribution of the
response y when x = 0.
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Simple linear regression model with normal errors

We further assume that ε is Gaussian, i.e., ε ∼ N(0,σ2).
This means given x the response is generated by
N(β0 +β1x,σ2).
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Estimation of parameters

Let our data (or observations) be (x1,y1), . . . ,(xn,yn)

Then SLR model assumes

yi = β0 +β1xi + εi,

where εi
iid∼ N

(
0,σ2

)
.

Parameters in the model: (β0,β1,σ
2)

In STAT 310, you might deal with the model yi = µ + εi, or
yi

iid∼ N(µ,σ2).
We here use the maximum likelihood estimators (MLE).
The likelihood function is

L(β0,β1,σ
2) =

n

∏
i=1

1√
2πσ2

exp
{
− 1

2σ2 (yi−β0−β1xi)
2
}

Then the MLE is obtained by

(β̂ MLE
0 , β̂ MLE

1 , σ̂2
MLE) = argmax

β0,β1,σ2
L(β0,β1,σ

2).
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MLE of (β0,β1) - a sketch

The log-likelihood function simplifies to

logL(β0,β1,σ
2)=−n

2
logσ

2− 1
2σ2

n

∑
i=1

(yi−β0−β1xi)
2+constant

MLE of (β0,β1) satisfies that

(β̂ MLE
0 , β̂ MLE

1 ) = argmin
β0,β1

n

∑
i=1

(yi−β0−β1xi)
2.

1 Set the first derivative to be 0.{
β0 ∑

n
i=1 xi +β1 ∑

n
i=1 x2

i = ∑
n
i=1 xiyi

β0n+β1 ∑
n
i=1 xi = ∑

n
i=1 yi

2 Solve equations. Let x̄ = ∑
n
i=1 xi/n and ȳ = ∑

n
i=1 yi/n.

β̂
MLE
1 =

∑
n
i=1 (xi− x̄)(yi− ȳ)

∑
n
i=1 (xi− x̄)2 , (2)

β̂
MLE
0 = ȳ− β̂

MLE
1 x̄ (3)

3 Check the 2nd derivative - negative at (β̂ MLE
0 , β̂ MLE

1 ).
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MLE of σ2

Similarly, we have

σ̂2
MLE =

∑
n
i=1{yi− (β̂ MLE

0 + β̂ MLE
1 xi)}2

n
. (4)

Notation:
Sxx =

n

∑
i=1

(xi− x̄)2 =
n

∑
i=1

(xi− x̄)xi =
n

∑
i=1

x2
i −nx̄2

Syy =
n

∑
i=1

(yi− ȳ)2 =
n

∑
i=1

(yi− ȳ)yi =
n

∑
i=1

y2
i −nȳ2

Sxy =
n

∑
i=1

(xi− x̄)(yi− ȳ) =
n

∑
i=1

xiyi−nx̄ȳ;

Fitted values: ŷi = β̂
MLE
0 + β̂

MLE
1 xi

Residues: ei = yi− ŷi

We then rewrite the MLE in equations (2), (3) and (4) to

β̂
MLE
1 = Sxy/Sxx, β̂

MLE
0 = ȳ− β̂

MLE
1 x̄, σ̂2

MLE =
n

∑
i=1

e2
i /n.
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Least-squares estimators of (β0,β1)

Least squares estimation seeks to minimize the sum of
squares of the differences between the observed
response, yi, and the straight line.

(β̂ LS
0 , β̂ LS

1 ) = argmin
β0,β1

n

∑
i=1

(yi−β0−β1xi)
2.

Therefore, least-square estimators of (β0,β1) are identical
to MLE’s under normal assumption, i.e.,

β̂
LS
1 = Sxy/Sxx, β̂

LS
0 = ȳ− β̂

LS
1 x̄.

We simply use (β̂0, β̂1) for both maximum likelihood and
(ordinary) least-square estimators.

7 / 11



Unbiased estimator of σ2

Sample variances of e1, . . . ,en is a sensible estimator of σ2

It turns out that

σ̂2 =
∑

n
i=1{yi− (β̂0 + β̂1xi)}2

n−2
=

∑
n
i=1 e2

i

n−2
(5)

is an unbiased estimator of σ2.
This is different from σ̂2

MLE!
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MLE vs. OLS

(Ordinary) least-square estimators do not require normal
assumption but relies on a loss function.
Least-square estimators certainly change if we switch the
loss function.
They are identical for both the intercept and slope.
MLE provides a statistical justification to least-square
estimator on its use of squared loss.
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Computation

Use the previous Delivery example
The least-square line is

ŷ = 3.321+2.1762x

R script “delivery.R" available online to demonstrate the
calculation.
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Discussion & What’s next

Other estimators do exist, for example, Bayesian
estimators.
It thus becomes necessary to investigate properties of an
estimator to allow comparison.
Furthermore, we would like to draw inferences beyond a
point estimate.
These discussions will be covered by the next lectures.

11 / 11


