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Simple linear regression model

o Simple linear regression model:

y=PBo+Pix+e, (1)

where £ has mean 0 and 62 < .
@ Question: terminology associated with x,y, B, B;.
o SLR implies

E(ylx) = fo+Bix, Var(yx) = o”.
o Thus, given x, the mean of y is a linear function of x but the

variance of y does not depend on x.

o Interpretation of B;: change in the mean of the distribution
of y produced by a unit change in x.

o Interpretation of fBy: the mean of the distribution of the
response y when x = 0.



Simple linear regression model with normal errors

o We further assume that ¢ is Gaussian, i.e., € ~ N(0,02).

o This means given x the response is generated by
N(Bo+ Bix,c?).
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Estimation of parameters

o Let our data (or observations) be (x1,y1),..., (X4, yn)
@ Then SLR model assumes

= Bo+ Bixi + &,

where el 9N (0,0 )
o Parameters in the model: (B, Bi,0?)

@ In STAT 310, you might deal with the model y; = u +¢;, or

)’IEN(” G)

@ We here use the maximum likelihood estimators (MLE).
o The likelihood function is

L 1 1
L(po, ,62 =|]|—=-¢x X; 2}
(l}O ﬁl ) II:II \/W p { 2 2 ( 130 Bl )
@ Then the MLE is obtained by

(BYE, BMLE 62y ) = argmax L(Bo. B1,c?).

BoB1,0?



MLE of (B, B1) - a sketch

o The log-likelihood function simplifies to

log L(Bo, B1,07%) =

n

2
o MLE of (By, B1) satisfies that
(BY™E, BYEE) = argmin ¥ (i — Bo — Bixi)>.

Bo.B1  i=1

1 n
logo? — 757 Y (yi—Bo— Buixi)* +constant
i=1

@ Set the first derivative to be 0.

ﬁo Z,r'l:1 Xi+ ﬁl Z?:1 xiz = Z?:1 XiYi
Bon+Bi Xl xi =X yi

@ Solve equations. Letx=Y" ,x;/nandy=Y" ,y;/n.

AMLE _ L1 (i —X) (i — )
U TR, @
By =5 — ez (3)

@ Check the 2nd derivative - negative at (BMLE, BULE).



MLE of ¢?

o Similarly, we have

e n (R R 12
P R ey o)

o Notation:
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Fitted values: §; = BLE + BMLEy,

Residues: ¢; = y; — 9;
o We then rewrite the MLE in equations (2), (3) and (4) to
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Least-squares estimators of (B, Bi)

o Least squares estimation seeks to minimize the sum of
squares of the differences between the observed
response, y;, and the straight line.

Qo

(BES, BS) = argmin ¥ (y; — Bo — Bixi)*.
Bo.B1 =1

o Therefore, least-square estimators of (B, B1) are identical
to MLE’s under normal assumption, i.e.,

1LS :Sxy/Sxxa ﬁoLS :)_’_BILS)_C-

o We simply use (S, 1) for both maximum likelihood and
(ordinary) least-square estimators.



Unbiased estimator of ¢

o Sample variances of e, ...,e, is a sensible estimator of o>
o It turns out that
= _ X i—(Bo+Bi)y? _ Xiie

2 p—
o n—2 n—2 ()

is an unbiased estimator of ¢2.
o This is different from 63, ;!



MLE vs. OLS

o (Ordinary) least-square estimators do not require normal
assumption but relies on a loss function.

o Least-square estimators certainly change if we switch the
loss function.

o They are identical for both the intercept and slope.

o MLE provides a statistical justification to least-square
estimator on its use of squared loss.



Computation

o Use the previous Delivery example
o The least-square line is

$=3.321+2.1762x

o R script “delivery.R" available online to demonstrate the
calculation.
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Discussion & What'’s next

o Other estimators do exist, for example, Bayesian
estimators.

o It thus becomes necessary to investigate properties of an
estimator to allow comparison.

o Furthermore, we would like to draw inferences beyond a
point estimate.

o These discussions will be covered by the next lectures.
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