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By retaining a subset of the predictors and discarding the
rest, subset selection produces a model that is
interpretable and has possibly lower prediction error than
the full model.
However, because it is a discrete process—variables are
either retained or discarded—it often exhibits high
variance, and so does not reduce the prediction error of
the full model.
Shrinkage methods are more continuous, and do not suffer
as much from high variability.
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Ridge Regression

Ridge regression shrinks the regression coefficients by
imposing a penalty on their size.
The ridge coefficients minimize a penalized residual sum
of squares, i.e.,
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where λ ≥ 0 is a complexity parameter that controls the
amount of shrinkage.

Larger value of λ means greater amount of shrinkage.
The coefficients are shrunk toward zero.
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An equivalent way to write the ridge problem is

β̂
ridge = argmin

βββ
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2
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where there is a one-to-one correspondence between the
parameters λ and t.
The size constraint on the coefficients in the ridge
regression alleviates the problem of large coefficients (in
absolute values) and its high variance, which may be a
consequence of multicollinearity.
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Write the objective function in matrix form:

S(βββ ) = (y−Xβββ )′(y−Xβββ )+λβββ
′
βββ

The ridge regression solutions are

β̂ββ
ridge

= (X′X+λ I)−1X′y

The ridge regression solution is again a linear function of y.
The inverse (X′X+λ I)−1 exists even if X′X is not of full
rank.

In the case of orthonormal inputs, i.e., X′X = I, the ridge
estimates are just a scaled version of the least squares
estimates, that is,

β̂ββ
ridge

= β̂ββ/(1+λ ),

where β̂ββ are the OLS estimates.
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LASSO

The lasso is a shrinkage method like ridge, with subtle but
important differences. The lasso estimate is defined by

β̂
lasso = argmin

βββ
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We can also write the lasso problem in the equivalent
Lagrangian form

β̂
lasso = argmin
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The L2 penalty in the ridge regression ∑
k
j=1 β 2

j is replaced
by the L1 penalty ∑

k
j=1 |βj|.

This latter constraint makes the solutions nonlinear in y,
and there is no closed form expression as in ridge
regression.
Efficient algorithms such as Least angle regression (LAR)
are available for computing the entire path of solutions as
λ is varied.
Because of the nature of the constraint, making t
sufficiently small will cause some of the coefficients to be
exactly zero; this is not obvious.
Thus the lasso does a kind of continuous subset selection.
If t is chosen larger than t0 = ∑

k
j=1 |β̂j| (where β̂j is the OLS

estimate), then the lasso estimates are the OLS estimates.
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Subset Selection, Ridge Regression and the Lasso

In the case of an orthonormal input matrix X, the three
procedures have explicit solutions.

Ridge regression does a proportional shrinkage.
Lasso translates each coefficient by a constant factor λ ,
truncating at zero, i.e., “soft thresholding".
Best-subset selection drops all variables with coefficients
smaller than the Mth largest, i.e., “hard-thresholding."
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Example: Prostate Cancer
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Figure: Profiles of ridge and lasso coefficients. The effective degrees
of freedom df(λ ) is controlled by λ and defined by
tr(X(X′X+λ I)−1X′). The shrinkage factor s is t/∑

k
j=1 |β̂j|.
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Generalization

We can generalize ridge regression and the lasso:

β̃ = argmin
βββ

{
n

∑
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∑
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}
,

When q > 1, |βj|q is differentiable at 0, and so does not set
the coefficients exactly to zero as in lasso.
Elastic-net penalty uses

λ

k

∑
j=1

(αβ
2
j +(1−α)|βj|)

as a compromise between ridge and lasso.
Elastic-net selects variables like the lasso, and shrinks
together the coefficients of correlated predictors like ridge.

11 / 13



A unified framework: Bayesian point of view

Bayes formula:

π(βββ |y,X) =
f (y|βββ ,X)π(βββ )∫

f (y|βββ ,X)π(βββ )dβββ
∝ f (y|βββ ,X)π(βββ ).

We can view |βj|q as the log-prior density for βj.
The lasso, ridge regression and best subset selection are
Bayes estimates with different priors.
They are derived as posterior modes rather than the
posterior mean which is more commonly used in Bayesian
literature.

Ridge regression is also the posterior mean, but the lasso
and best subset selection are not.
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The end of the beginning

Seven pillars of statistical wisdom (Stigler at the JSM 2014)
Wisdom has built her house;

She has hewn out her seven pillars.
- Proverbs 9:1

1. Aggregation of information.
2. Diminishing information.
3. Mathematical quantification of information/uncertainty.
4. Intercomparisons.
5. Regression and multivariate analysis.
6. Design.
7. Models and residuals.
Ten Simple Rules for Effective Statistical Practice
http://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1004961
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