STAT 410 - Linear Regression Lecture 15

Meng Li

Department of Statistics
Nov 9, 2017
, RICE

- Thus far we have been concerned with developing models where the response variable is numeric and ideally follows a normal distribution.
- In this lecture, we consider the situation in which the response variable is based on a series of "yes"/"no" responses.
- Ideally such responses follow a Bernoulli distribution or in general binomial distribution in which case the appropriate model is a logistic regression model.
- Data: $\left(y_{i}, \mathbf{x}_{i}\right)$ where y_{i} takes values either 1 or 0 .
- It makes sense to assume $y_{i} \sim \operatorname{Bernoulli}\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$ but $\mathbf{x}_{i} \boldsymbol{\beta}$ may violate the constraint that a success probability $\pi_{i}=E\left(y_{i}\right)$ is between 0 and 1.
- We introduce the logistic transformation to guarantee the success probability takes values in the unit interval:

$$
\begin{equation*}
\pi_{i}=E\left(y_{i}\right)=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}=\frac{1}{1+\exp \left(-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \tag{1}
\end{equation*}
$$

where the function $f(t)=1 /(1+\exp (-t))$ is the logistic function.

- In other words, we model the transformed mean using linear regression:

$$
\log \frac{\pi_{i}}{1-\pi_{i}}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
$$

where the function $g(\pi)=\log (\pi /(1-\pi))$ for $\pi \in(0,1)$ is the logit function.

- The logit function is the inverse of the logistic function.
- The ratio $\pi /(1-\pi)$ is called the odds.
- Model: $y_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}\right)$ and $\pi_{i}=\frac{1}{1+\exp \left(-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}$.
- Alternative form: $P\left(y_{i}=1\right)=\frac{1}{1+\exp \left(-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}$.
- The density of each y_{i} is

$$
\pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}}=\left(\frac{\pi_{i}}{1-\pi_{i}}\right)^{y_{i}}\left(1-\pi_{i}\right) .
$$

- Therefore, the log-likelihood function is

$$
\begin{align*}
\log L(\boldsymbol{\beta}) & =\sum_{i=1}^{n}\left\{y_{i} \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)+\log \left(1-\pi_{i}\right)\right\} \tag{2}\\
& =\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\sum_{i=1}^{n} \log \left(1+\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \tag{3}
\end{align*}
$$

- The MLE is obtained by numerically maximizing the log-likelihood function though the Newton-Raphson algorithm or iteratively reweighted least squares.

Inference

- The asymptotic distributions of $\hat{\beta}$ is available due to the properties of MLE.
- "Asymptotic" means the sample size is sufficiently large.
- Under regular conditions, any MLE is asymptotically normal with mean $\boldsymbol{\beta}$ and covariance matrix $I(\boldsymbol{\beta})^{-1}$, where $I(\boldsymbol{\beta})$ is the Fisher information contained in the full data, i.e., the expectation of negative second derivatives of $\log L(\boldsymbol{\beta})$.
- Consequently, we have $\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}$ and $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\left(\mathbf{X V X}^{\prime}\right)^{-1}$, where $\mathbf{V}=\operatorname{diag}\left(\pi_{1}\left(1-\pi_{1}\right), \ldots, \pi_{n}\left(1-\pi_{n}\right)\right)$, asymptotically.
- This enables us to conduct hypothesis testing on $\boldsymbol{\beta}$ and construct confidence intervals.

Comments

- Similarly to linear regression, we have diagnostic checking, model comparison etc. for logistic regression.
- The logistic function fits into the framework of generalized linear models (GLM), which allows for Binomial, Poisson, and general exponential family distributions.
- Other link functions are available, for example, the Probit model uses

$$
\pi_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

where $\Phi(\cdot)$ is the CDF of standard normal. The function $\Phi^{-1}(\cdot)$ is called the probit function.

- In general, the selection of link functions are not important.

