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Thus far we have been concerned with developing models
where the response variable is numeric and ideally follows
a normal distribution.
In this lecture, we consider the situation in which the
response variable is based on a series of “yes"/“no"
responses.
Ideally such responses follow a Bernoulli distribution or in
general binomial distribution in which case the appropriate
model is a logistic regression model.
Data: (yi,xi) where yi takes values either 1 or 0.
It makes sense to assume yi ∼ Bernoulli(xiβββ ) but xiβββ may
violate the constraint that a success probability πi = E(yi) is
between 0 and 1.
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Logistic regression

We introduce the logistic transformation to guarantee the
success probability takes values in the unit interval:

πi = E(yi) =
exp(x′iβββ )

1+ exp(x′iβββ )
=

1
1+ exp(−x′iβββ )

, (1)

where the function f (t) = 1/(1+ exp(−t)) is the logistic
function.
In other words, we model the transformed mean using
linear regression:

log
πi

1−πi
= x′iβββ ,

where the function g(π) = log(π/(1−π)) for π ∈ (0,1) is the
logit function.
The logit function is the inverse of the logistic function.
The ratio π/(1−π) is called the odds.
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Estimation

Model: yi ∼ Bernoulli(πi) and πi =
1

1+exp(−x′iβββ )
.

Alternative form: P(yi = 1) = 1
1+exp(−x′iβββ )

.

The density of each yi is

π
yi
i (1−πi)

1−yi =

(
πi

1−πi

)yi

(1−πi).

Therefore, the log-likelihood function is

logL(βββ ) =
n

∑
i=1

{
yi log

(
πi

1−πi

)
+ log(1−πi)

}
(2)

=
n

∑
i=1

yix′iβββ −
n

∑
i=1

log(1+ exp(x′iβββ )) (3)

The MLE is obtained by numerically maximizing the
log-likelihood function though the Newton-Raphson
algorithm or iteratively reweighted least squares.
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Inference

The asymptotic distributions of β̂ββ is available due to the
properties of MLE.

“Asymptotic" means the sample size is sufficiently large.
Under regular conditions, any MLE is asymptotically normal
with mean βββ and covariance matrix I(βββ )−1, where I(βββ ) is
the Fisher information contained in the full data, i.e., the
expectation of negative second derivatives of logL(βββ ).

Consequently, we have E(β̂ββ ) = βββ and Var(β̂ββ ) = (XVX′)−1,
where V = diag(π1(1−π1), . . . ,πn(1−πn)), asymptotically.
This enables us to conduct hypothesis testing on βββ and
construct confidence intervals.
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Comments

Similarly to linear regression, we have diagnostic checking,
model comparison etc. for logistic regression.
The logistic function fits into the framework of generalized
linear models (GLM), which allows for Binomial, Poisson,
and general exponential family distributions.
Other link functions are available, for example, the Probit
model uses

πi = Φ(x′iβββ ),

where Φ(·) is the CDF of standard normal. The function
Φ−1(·) is called the probit function.
In general, the selection of link functions are not important.
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