STAT 410 - Linear Regression Lecture 14

Meng Li

Department of Statistics

Nov 7, 2017

Criteria for model selection

For a linear regression model with *p* regressors including the intercept, we will have $2^p - 1$ regression models to consider.

• R²: Coefficient of determination

•
$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}$$

 R² increases as the p increases, regardless of that the added predictors are linearly associated with y or not.

- For example, if p = n, we will have $R^2 = 1$.
- Therefore, *R*² is not a good measurement to compare models with different number of parameters.
- R_{adj}^2 : Adjusted coefficient of determination

$$R_{adj}^2 = 1 - \frac{SS_{Res}/(n-p-1)}{SS_T/(n-1)} = 1 - \frac{MS_{Res}}{MS_T}$$

- The inclusion of new parameters is penalized by n-p-1 while R^2 increases (or equivalently, SS_{Res} decreases).
- Therefore, R_{adj}^2 is (more) suitable to compare models with different number of parameters as it introduces a penalty on model complexity.

AIC: Akaike's Information Criterion

The Akaike's Information Criterion (AIC) is defined as

$$\mathsf{AIC} = -2\log L(\hat{\theta}) + 2K,$$

where $\hat{\theta}$ is the MLE of the parameter θ (which is possibly a vector), $L(\hat{\theta})$ is the likelihood evaluated at the MLE, and *K* is the number of parameters in the model.

- Only differences in AIC are meaningful, thus any common additive constant can be ignored.
- For MLR, we have

$$\mathsf{AIC} = -2\log L(\hat{\pmb{\beta}}, \hat{\sigma}^2) + 2(p+1),$$

where p is the number of β 's in MLR including the intercept.

This further reduces to

$$\mathsf{AIC} = n\log\frac{SS_{Res}}{n} + 2p + \text{ constant.}$$

• AIC_c: Corrected AIC:

$$\mathsf{AIC}_c = \mathsf{AIC} + \frac{2K(K+1)}{n-K+1}.$$

- AIC is information-based criterion (specifically, it is an estimate of the Kullback-Leibler information disregarding additive constants), and AIC_c tends to have smaller bias.
- AIC_c induces a heavier penalty on the number of parameters.

BIC:Bayesian information criterion

BIC is defined by

 $\mathsf{BIC} = -2\log L(\hat{\theta}) + K\log n.$

- It penalizes the complexity of the model where complexity refers to the number of parameters in the model.
- General comments:
 - Model selection is an "unsolved" problem. There are no magic procedures that gives us the "best" model.
 - There are other model selection criteria such as prediction-based approaches and Bayesian model selections.
 - A popular data analysis strategy is to calculate R_{adj}^2 , AIC, AIC_c and BIC and compare the models which minimize AIC, AIC_c and BIC with the model that maximizes R_{adj}^2 .

We calculate the discussed criteria for all subsets of regressors in the bridge construction example:

Subset size	Predictors	$R^2_{ m adj}$	AIC	AIC _c	BIC
1	log(Dwgs)	0.702	-94.90	-94.31	-91.28
2	log(Dwgs), log(Spans)	0.753	-102.37	-101.37	-96.95
3	log(Dwgs), log(Spans), log(CCost)	0.758	-102.41	-100.87	-95.19
4	log(Dwgs), log(Spans), log(CCost), log(DArea)	0.753	-100.64	-98.43	-91.61
5	log(Dwgs), log(Spans), log(CCost), log(DArea), log(Length)	0.748	-98.71	-95.68	-87.87

Therefore, we may choose the size 2 model including log(Dwgs) and log(Spans) as the regressors.

- The approach of all subsets cannot scale up if *p* is large.
- Next we shall introduce model selection techniques other than considering all subsets of regressors.