STAT 410 - Linear Regression
 Lecture 14

Meng Li

Department of Statistics
Nov 7, 2017
, RICE

Criteria for model selection

For a linear regression model with p regressors including the intercept, we will have $2^{p}-1$ regression models to consider.

- R^{2} : Coefficient of determination
- $R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{R e s}}{S S_{T}}=1-\frac{S S_{R e s}}{S S_{T}}$
- R^{2} increases as the p increases, regardless of that the added predictors are linearly associated with y or not.
- For example, if $p=n$, we will have $R^{2}=1$.
- Therefore, R^{2} is not a good measurement to compare models with different number of parameters.
- $R_{a d j}^{2}$: Adjusted coefficient of determination

$$
R_{a d j}^{2}=1-\frac{S S_{\text {Res }} /(n-p-1)}{S S_{T} /(n-1)}=1-\frac{M S_{\text {Res }}}{M S_{T}}
$$

- The inclusion of new parameters is penalized by $n-p-1$ while R^{2} increases (or equivalently, $S S_{\text {Res }}$ decreases).
- Therefore, $R_{a d j}^{2}$ is (more) suitable to compare models with different number of parameters as it introduces a penalty on model complexity.
- AIC: Akaike's Information Criterion
- The Akaike's Information Criterion (AIC) is defined as

$$
\mathrm{AIC}=-2 \log L(\hat{\theta})+2 K
$$

where $\hat{\theta}$ is the MLE of the parameter θ (which is possibly a vector), $L(\hat{\theta})$ is the likelihood evaluated at the MLE, and K is the number of parameters in the model.

- Only differences in AIC are meaningful, thus any common additive constant can be ignored.
- For MLR, we have

$$
\mathrm{AIC}=-2 \log L\left(\hat{\boldsymbol{\beta}}, \hat{\sigma}^{2}\right)+2(p+1)
$$

where p is the number of β 's in MLR including the intercept.

- This further reduces to

$$
\mathrm{AIC}=n \log \frac{S S_{\text {Res }}}{n}+2 p+\text { constant }
$$

- AIC_{c} : Corrected AIC:

$$
\mathrm{AlC}_{c}=\mathrm{AlC}+\frac{2 K(K+1)}{n-K+1}
$$

- AIC is information-based criterion (specifically, it is an estimate of the Kullback-Leibler information disregarding additive constants), and AIC_{c} tends to have smaller bias.
- AIC_{c} induces a heavier penalty on the number of parameters.
- BIC:Bayesian information criterion
- BIC is defined by

$$
\mathrm{BIC}=-2 \log L(\hat{\theta})+K \log n
$$

- It penalizes the complexity of the model where complexity refers to the number of parameters in the model.
- General comments:
- Model selection is an "unsolved" problem. There are no magic procedures that gives us the "best" model.
- There are other model selection criteria such as prediction-based approaches and Bayesian model selections.
- A popular data analysis strategy is to calculate $R_{a d j}^{2}, \mathrm{AIC}, \mathrm{AIC}_{c}$ and BIC and compare the models which minimize $\mathrm{AIC}, \mathrm{AIC}_{c}$ and BIC with the model that maximizes $R_{a d j}^{2}$.

Example: bridge construction

We calculate the discussed criteria for all subsets of regressors in the bridge construction example:

Subset size	Predictors	$R_{\text {adj }}^{2}$	AIC	$\mathrm{AIC}_{\mathrm{C}}$	BIC
1	\log (Dwgs)	0.702	-94.90	-94.31	-91.28
2	\log (Dwgs), \log (Spans)	0.753	-102.37	-101.37	-96.95
3	\log (Dwgs), \log (Spans), \log (CCost)	0.758	-102.41	-100.87	-95.19
4	$\begin{aligned} & \log (\text { Dwgs }), \log (\text { Spans }), \log (\text { CCost }), \\ & \quad \log \text { (DArea) } \end{aligned}$	0.753	-100.64	-98.43	-91.61
5	\log (Dwgs), \log (Spans), \log (CCost), \log (DArea), \log (Length)	0.748	-98.71	-95.68	-87.87

Therefore, we may choose the size 2 model including \log (Dwgs) and log(Spans) as the regressors.

- The approach of all subsets cannot scale up if p is large.
- Next we shall introduce model selection techniques other than considering all subsets of regressors.

