# STAT 410 - Linear Regression Lecture 13 

Meng Li

Department of Statistics

Oct. 31, 2017
, RICE

## Multicollinearity

- The LS estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$.
- Let $\mathbf{X}=\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{p}\right]$ where $\mathbf{X}_{j}$ is the vector to contain the $j$ th regressor.
- The vectors $\mathbf{X}_{1}, \ldots, \mathbf{X}_{p}$ is called linearly dependent if there is a set of constants $t_{1}, \ldots, t_{p}$ that are not all zero such that

$$
\sum_{j=1}^{p} t_{j} \mathbf{X}_{j}=0
$$

- Multicollinearity means the matrix $\mathbf{X}^{\prime} \mathbf{X}$ is close to a singular matrix where $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ does not exist.
- Possible sources:
- Regressors are just highly correlated in a lot of experiments
- Over-complete model, e.g., one-way ANOVA without constraint
- $p>n$, e.g., big data
- etc.


## Consequences

- Numerically, it is not stable.
- Let the eigenvalues of $\mathbf{X}^{\prime} \mathbf{X}$ be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}$.
- We conclude that $\lambda_{j} \geq 0$ for $j=1, \ldots, p$ because $\mathbf{X}^{\prime} \mathbf{X}$ is positive semi-definite.
- However, some of $\lambda_{j}$ could be very small and close to 0 .
- The condition number of $\mathbf{X}^{\prime} \mathbf{X}$ is defined as

$$
\kappa=\frac{\lambda_{\max }}{\lambda_{\min }}=\frac{\lambda_{1}}{\lambda_{p}} .
$$

- A large condition number indicates the numerical instability when calculating the inverse of $\mathbf{X}^{\prime} \mathbf{X}$.
- Inflated variance of $\hat{\beta}_{j}$.
- Recall: the covariance matrix of $\hat{\boldsymbol{\beta}}$ is $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- Let $C_{j j}$ be the $(j, j)$ th entry of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, then $\operatorname{Var} \hat{\beta}_{j}=\sigma^{2} C_{j j}$.
- Multicollinearity leads to a large value of $C_{j j}$ thus inflate the variance. Consequently, $\beta_{j}$ tend to be not significant if we conduct a $t$ test.
- The variance inflation factor, or $\mathrm{VIF}_{j}$ is defined by

$$
\mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}
$$

where $R_{j}$ is the determination coefficient from the regression of $x_{j}$ on the other regressors.

- VIFs help identify which regressors are involved in the multicollinearity.
- In practice, VIF $>5$ is considered an important level of multicollinearity. If the maximum VIF of a given model exceeds 10 it is an indication that multicollinearity may be adversely influencing the least squares estimates.
- Large absolute values of $\hat{\beta}_{j}$.
- The expected squared distance of $\hat{\boldsymbol{\beta}}$ from $\boldsymbol{\beta}$ is

$$
\begin{align*}
& \mathrm{E}\left\{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\right\}=\operatorname{tr}\left(\mathrm{E}\left\{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right\}\right)  \tag{1}\\
= & \operatorname{tr}(\operatorname{Var}(\hat{\boldsymbol{\beta}}))=\sigma^{2} \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} . \tag{2}
\end{align*}
$$

- We further simply it to

$$
\mathrm{E}\left\{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\right\}=\sigma^{2} \sum_{j=1}^{p} \frac{1}{\lambda_{j}},
$$

as the trace of a matrix is equal to the sum of its eigenvalues.

- Multicollinearity may bring a switched sign of $\hat{\beta}_{j}$ thus affect the model interpretation.
- Let's go to the R markdown file for various examples.
- What's next:
- We shall learn model building techniques to select the best set of variables.
- We shall use regularization in model fitting, therefore we include all variables in the model and avoid undesirable performances of parameter estimation.

