STAT 410 - Linear Regression Lecture 13

Meng Li

Department of Statistics

Oct. 31, 2017

Multicollinearity

- The LS estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.
- Let $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_p]$ where \mathbf{X}_j is the vector to contain the *j*th regressor.
 - The vectors **X**₁,...,**X**_{*p*} is called *linearly dependent* if there is a set of constants *t*₁,...,*t*_{*p*} that are not all zero such that

$$\sum_{j=1}^p t_j \mathbf{X}_j = 0.$$

- Multicollinearity means the matrix X'X is close to a singular matrix where (X'X)⁻¹ does not exist.
- Possible sources:
 - Regressors are just highly correlated in a lot of experiments
 - Over-complete model, e.g., one-way ANOVA without constraint
 - *p* > *n*, e.g., big data
 - etc.

- Numerically, it is not stable.
 - Let the eigenvalues of $\mathbf{X}'\mathbf{X}$ be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$.
 - We conclude that $\lambda_j \ge 0$ for j = 1, ..., p because $\mathbf{X}'\mathbf{X}$ is positive semi-definite.
 - However, some of λ_i could be very small and close to 0.
 - The condition number of X'X is defined as

$$\kappa = rac{\lambda \max}{\lambda_{\min}} = rac{\lambda_1}{\lambda_p}.$$

• A large condition number indicates the numerical instability when calculating the inverse of X'X.

- Inflated variance of $\hat{\beta}_j$.
 - Recall: the covariance matrix of $\hat{\boldsymbol{\beta}}$ is $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$.
 - Let C_{jj} be the (j,j)th entry of $(\mathbf{X}'\mathbf{X})^{-1}$, then $\operatorname{Var}\hat{\beta}_j = \sigma^2 C_{jj}$.
 - Multicollinearity leads to a large value of C_{jj} thus inflate the variance. Consequently, β_j tend to be not significant if we conduct a *t* test.
 - The variance inflation factor, or VIF_j is defined by

$$\mathsf{VIF}_j = \frac{1}{1 - R_j^2},$$

where R_j is the determination coefficient from the regression of x_j on the other regressors.

- VIFs help identify which regressors are involved in the multicollinearity.
- In practice, VIF > 5 is considered an important level of multicollinearity. If the maximum VIF of a given model exceeds 10 it is an indication that multicollinearity may be adversely influencing the least squares estimates.

• Large absolute values of $\hat{\beta}_i$.

• The expected squared distance of $\hat{\beta}$ from β is

$$E\{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\} = tr(E\{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\})$$
(1)
= tr(Var($\hat{\boldsymbol{\beta}}$)) = σ^{2} tr($\mathbf{X}'\mathbf{X}$)⁻¹. (2)

We further simply it to

$$\mathrm{E}\{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})'(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\}=\sigma^{2}\sum_{j=1}^{p}\frac{1}{\lambda_{j}},$$

as the trace of a matrix is equal to the sum of its eigenvalues.

 Multicollinearity may bring a switched sign of β_j thus affect the model interpretation.

- Let's go to the R markdown file for various examples.
- What's next:
 - We shall learn model building techniques to select the best set of variables.
 - We shall use regularization in model fitting, therefore we include all variables in the model and avoid undesirable performances of parameter estimation.