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Generalized Least Squares

o What is a linear regression models does not have a
constant variance? That is, the model is

y=XB +¢,

where
E(g)=0, Var(g)=c>V.
o Is the ordinary least square f} = (X'X)~ X'y still
appropriate?
o If V is positive definite and symmetric, then there exists a
positive definite and symmetric matrix K such that KK =V.
o Kis called the principal square root of V.
o This allows us to transfer the original model to our familiar
context where the error has constant variance:

K ly=K 'XB+K'e.



Results for GLS

o After the transformation, all we have learned from OLS
apply - we just use the transformed response, design
matrix and error term.

o Loss function: S(B) = (y —XB)'V_!(y — XB).
o Normal equations:

XV IX)B=XVly

o Solution: .
B _ (leflx)flxlvfly

o Properties:
EB =B, VarP=c>(XV X)L

o f is the best linear unbiased estimators of B (BLUE).



A special case: weighted least squares

o Consider the case where the errors € are uncorrected but
the variances are unequal, i.e.,

V =diag(1/wi,1/wa,..., 1/wy);

diag(a) means a diagonal matrix with diagonal vector a.

o The weights w;’s have to be positive because V is a
covariance matrix.

o It follows that K = diag(1/,/w1,1/\/W2,...,1//ws), and

consequently
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o Similarly,

1\/7 X11\/7 : Xlk\/"Tl

KX — 1\/ 2 xzn/ © X/ W2
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o The loss functions simplifies to
S(ﬁ):(y—XB)/V y XB Zweza

where ¢; is the ith element of y — XB with a slight abuse of
notation.
o Practical motivations:

o IF model diagnostics indicate Var(g;) = ox;; for some j,
then we can let w; = 1/x;; and refit the model using
weighted least squares.

o From the experimental design point of view, if y; is an
average of n; i.i.d. observations, we then have
Var(g) = 62 /n; and thus w; = n;.



Application of GLS: mixed models

@ SLR or MLR considers one source of variability using &;.

o However, many important experimental designs require the
use of multiple sources of variability.

o Paper helicopters example: consider an experiment to
determine the effect of the length of the helicopter’s wings
to the typical flight time.

o There often is quite some error associated with measuring
the time for a specific flight, especially when the people
who are timing have no prior experience.

o A popular protocol has three people timing each flight.

o Helicopters vary as they may be made in a corporate short
course where the students have never made these
helicopters before.

o As aresult, this particular experiment has two sources of
variability: within each specific helicopter and between the
various helicopters used in the study.



SLR

o A simple linear regression model would be

yij = Bo+ Bixi + &,

wherei=1,2,....mandj=1,2,...,r.

m: number of helicopters

r; number of measured flight times for the ith helicopter
;- flight time for the jth flight of the ith helicopter

x;: length of the wings for the ith helicopter

g;: error term associated with the jth flight of the ith
helicopter
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o Does it make sense to assume g; uncorrelated or even
independent of each other?

o Random effects allow the analyst to take into account
multiple sources of variability.



Mixed models

o A more sensible model for the helicopter example is:

yij = Bo+ Bix; + 6 + &,

wherei=1,2,....mandj=1,2,...,r.
o m: number of helicopters
o r; number of measured flight times for the ith helicopter

;- flight time for the jth flight of the ith helicopter

x;: length of the wings for the ith helicopter

0;: error term associated with the ith helicopter

g;: error term associated with the jth flight of the ith

helicopter

o This is called a mixed model: fixed effects via x; and
random effects via §;.

o Random effect is viewed as a random sample from a
population, thus its variability rather than itself is of our
interest.
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0 The sample sizeisn=Y",r;.
o We assume §; ~ (0,0%) and g; ~ (0,0?) and each is
uncorrelated across i (or j).

o We can rewrite the mixed model as
y=XB+7Zd+¢,

where Y= ()7117)’12,- s Vs s Ymly Ym2s - - -,Ymr,,,), and

L, 0 ... 0
0 1, ... 0
Z=\| . . . .
o 0 .. 1,

o It follows that Var(y) = 6?1+ 63ZZ'.
o Therefore, the mixed model is equivalent to

y=XpB +¢€",

where €* has mean 0 and covariance V where
V=0c’1+032Z .



