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Generalized Least Squares

What is a linear regression models does not have a
constant variance? That is, the model is

y = Xβββ + εεε,

where
E(εεε) = 0, Var(εεε) = σ

2V.

Is the ordinary least square β̂ββ = (X′X)−1X′y still
appropriate?
If V is positive definite and symmetric, then there exists a
positive definite and symmetric matrix K such that KK = V.
K is called the principal square root of V.
This allows us to transfer the original model to our familiar
context where the error has constant variance:

K−1y = K−1Xβββ +K−1
εεε.
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Results for GLS

After the transformation, all we have learned from OLS
apply - we just use the transformed response, design
matrix and error term.

Loss function: S(βββ ) = (y−Xβββ )′V−1(y−Xβββ ).
Normal equations:

(X′V−1X)β̂ββ = X′V−1y

Solution:
β̂ββ = (X′V−1X)−1X′V−1y

Properties:

Eβ̂ββ = βββ , Varβ̂ββ = σ
2(X′V−1X)−1.

β̂ is the best linear unbiased estimators of βββ (BLUE).
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A special case: weighted least squares

Consider the case where the errors εεε are uncorrected but
the variances are unequal, i.e.,

V = diag(1/w1,1/w2, . . . ,1/wn);

diag(a) means a diagonal matrix with diagonal vector a.
The weights wi’s have to be positive because V is a
covariance matrix.
It follows that K = diag(1/

√
w1,1/

√
w2, . . . ,1/

√
wn), and

consequently

K−1y =


y1
√

w1
y2
√

w2
...

yn
√

wn

 , K−1
εεε =


ε1
√

w1
ε2
√

w2
...

εn
√

wn

 .
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Similarly,

K−1X =


1
√

w1 x11
√

w1 · · · x1k
√

w1
1
√

w2 x21
√

w2 · · · x2k
√

w2
...

...
...

...
1
√

wn xn1
√

wn · · · xnk
√

wn


The loss functions simplifies to

S(βββ ) = (y−Xβββ )′V−1(y−Xβββ ) =
n

∑
i=1

wie2
i ,

where ei is the ith element of y−Xβββ with a slight abuse of
notation.
Practical motivations:

IF model diagnostics indicate Var(εi) = σ2xij for some j,
then we can let wi = 1/xij and refit the model using
weighted least squares.
From the experimental design point of view, if yi is an
average of ni i.i.d. observations, we then have
Var(εi) = σ2/ni and thus wi = ni.
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Application of GLS: mixed models

SLR or MLR considers one source of variability using εi.
However, many important experimental designs require the
use of multiple sources of variability.
Paper helicopters example: consider an experiment to
determine the effect of the length of the helicopter’s wings
to the typical flight time.

There often is quite some error associated with measuring
the time for a specific flight, especially when the people
who are timing have no prior experience.

A popular protocol has three people timing each flight.

Helicopters vary as they may be made in a corporate short
course where the students have never made these
helicopters before.
As a result, this particular experiment has two sources of
variability: within each specific helicopter and between the
various helicopters used in the study.
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SLR

A simple linear regression model would be

yij = β0 +β1xi + εij,

where i = 1,2, . . . ,m and j = 1,2, . . . ,ri.
m: number of helicopters
ri number of measured flight times for the ith helicopter
yij: flight time for the jth flight of the ith helicopter
xi: length of the wings for the ith helicopter
εij: error term associated with the jth flight of the ith
helicopter

Does it make sense to assume εij uncorrelated or even
independent of each other?
Random effects allow the analyst to take into account
multiple sources of variability.
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Mixed models

A more sensible model for the helicopter example is:

yij = β0 +β1xi +δi + εij,

where i = 1,2, . . . ,m and j = 1,2, . . . ,ri.
m: number of helicopters
ri number of measured flight times for the ith helicopter
yij: flight time for the jth flight of the ith helicopter
xi: length of the wings for the ith helicopter
δi: error term associated with the ith helicopter
εij: error term associated with the jth flight of the ith
helicopter

This is called a mixed model: fixed effects via xi and
random effects via δi.
Random effect is viewed as a random sample from a
population, thus its variability rather than itself is of our
interest.

8 / 9



The sample size is n = ∑
m
i=1 ri.

We assume δi ∼ (0,σ2
δ
) and εij ∼ (0,σ2) and each is

uncorrelated across i (or j).
We can rewrite the mixed model as

y = Xβββ +Zδ + εεε,

where y = (y11,y12, . . . ,y1r1 , . . . ,ym1,ym2, . . . ,ymrm), and

Z =


1r1 0 . . . 0
0 1r2 . . . 0
...

...
...

...
0 0 . . . 1rm


It follows that Var(y) = σ2I+σ2

δ
ZZ′.

Therefore, the mixed model is equivalent to

y = Xβββ + εεε
∗,

where εεε∗ has mean 0 and covariance V where
V = σ2I+σ2

δ
ZZ′.
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