STAT 410 - Linear Regression Lecture 11

Meng Li

Department of Statistics

Oct. 24, 2017

Generalized Least Squares

- What is a linear regression models does not have a constant variance? That is, the model is

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

where

$$
\mathrm{E}(\boldsymbol{\varepsilon})=0, \quad \operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{V}
$$

- Is the ordinary least square $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ still appropriate?
- If \mathbf{V} is positive definite and symmetric, then there exists a positive definite and symmetric matrix \mathbf{K} such that $\mathbf{K K}=\mathbf{V}$.
- \mathbf{K} is called the principal square root of \mathbf{V}.
- This allows us to transfer the original model to our familiar context where the error has constant variance:

$$
\mathbf{K}^{-1} \mathbf{y}=\mathbf{K}^{-1} \mathbf{X} \boldsymbol{\beta}+\mathbf{K}^{-1} \boldsymbol{\varepsilon}
$$

- After the transformation, all we have learned from OLS apply - we just use the transformed response, design matrix and error term.
- Loss function: $S(\boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$.
- Normal equations:

$$
\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right) \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}
$$

- Solution:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}
$$

- Properties:

$$
\mathrm{E} \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}, \quad \operatorname{Var} \hat{\boldsymbol{\beta}}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}
$$

- $\hat{\beta}$ is the best linear unbiased estimators of $\boldsymbol{\beta}$ (BLUE).

A special case: weighted least squares

- Consider the case where the errors $\boldsymbol{\varepsilon}$ are uncorrected but the variances are unequal, i.e.,

$$
\mathbf{V}=\operatorname{diag}\left(1 / w_{1}, 1 / w_{2}, \ldots, 1 / w_{n}\right)
$$

$\operatorname{diag}(\boldsymbol{a})$ means a diagonal matrix with diagonal vector \boldsymbol{a}.

- The weights w_{i} 's have to be positive because \mathbf{V} is a covariance matrix.
- It follows that $\mathbf{K}=\operatorname{diag}\left(1 / \sqrt{w_{1}}, 1 / \sqrt{w_{2}}, \ldots, 1 / \sqrt{w_{n}}\right)$, and consequently

$$
\mathbf{K}^{-1} \mathbf{y}=\left(\begin{array}{c}
y_{1} \sqrt{w_{1}} \\
y_{2} \sqrt{w_{2}} \\
\vdots \\
y_{n} \sqrt{w_{n}}
\end{array}\right), \quad \mathbf{K}^{-1} \boldsymbol{\varepsilon}=\left(\begin{array}{c}
\varepsilon_{1} \sqrt{w_{1}} \\
\varepsilon_{2} \sqrt{w_{2}} \\
\vdots \\
\varepsilon_{n} \sqrt{w_{n}}
\end{array}\right) .
$$

- Similarly,

$$
\mathbf{K}^{-1} \mathbf{X}=\left(\begin{array}{cccc}
1 \sqrt{w_{1}} & x_{11} \sqrt{w_{1}} & \cdots & x_{1 k} \sqrt{w_{1}} \\
1 \sqrt{w_{2}} & x_{21} \sqrt{w_{2}} & \cdots & x_{2 k} \sqrt{w_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
1 \sqrt{w_{n}} & x_{n 1} \sqrt{w_{n}} & \cdots & x_{n k} \sqrt{w_{n}}
\end{array}\right)
$$

- The loss functions simplifies to

$$
S(\boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\sum_{i=1}^{n} w_{i} e_{i}^{2}
$$

where e_{i} is the i th element of $\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$ with a slight abuse of notation.

- Practical motivations:
- IF model diagnostics indicate $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} x_{i j}$ for some j, then we can let $w_{i}=1 / x_{i j}$ and refit the model using weighted least squares.
- From the experimental design point of view, if y_{i} is an average of n_{i} i.i.d. observations, we then have $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} / n_{i}$ and thus $w_{i}=n_{i}$.

Application of GLS: mixed models

- SLR or MLR considers one source of variability using ε_{i}.
- However, many important experimental designs require the use of multiple sources of variability.
- Paper helicopters example: consider an experiment to determine the effect of the length of the helicopter's wings to the typical flight time.
- There often is quite some error associated with measuring the time for a specific flight, especially when the people who are timing have no prior experience.
- A popular protocol has three people timing each flight.
- Helicopters vary as they may be made in a corporate short course where the students have never made these helicopters before.
- As a result, this particular experiment has two sources of variability: within each specific helicopter and between the various helicopters used in the study.
- A simple linear regression model would be

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i j}
$$

where $i=1,2, \ldots, m$ and $j=1,2, \ldots, r_{i}$.

- m : number of helicopters
- r_{i} number of measured flight times for the i th helicopter
- $y_{i j}$: flight time for the j th flight of the i th helicopter
- x_{i} : length of the wings for the i th helicopter
- $\varepsilon_{i j}$: error term associated with the j th flight of the i th helicopter
- Does it make sense to assume $\varepsilon_{i j}$ uncorrelated or even independent of each other?
- Random effects allow the analyst to take into account multiple sources of variability.

Mixed models

- A more sensible model for the helicopter example is:

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\delta_{i}+\varepsilon_{i j}
$$

where $i=1,2, \ldots, m$ and $j=1,2, \ldots, r_{i}$.

- m : number of helicopters
- r_{i} number of measured flight times for the i th helicopter
- $y_{i j}$: flight time for the j th flight of the i th helicopter
- x_{i} : length of the wings for the i th helicopter
- δ_{i} : error term associated with the i th helicopter
- $\varepsilon_{i j}$: error term associated with the j th flight of the i th helicopter
- This is called a mixed model: fixed effects via x_{i} and random effects via δ_{i}.
- Random effect is viewed as a random sample from a population, thus its variability rather than itself is of our interest.
- The sample size is $n=\sum_{i=1}^{m} r_{i}$.
- We assume $\delta_{i} \sim\left(0, \sigma_{\delta}^{2}\right)$ and $\varepsilon_{i j} \sim\left(0, \sigma^{2}\right)$ and each is uncorrelated across i (or j).
- We can rewrite the mixed model as

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\delta}+\boldsymbol{\varepsilon}
$$

where $\mathbf{y}=\left(y_{11}, y_{12}, \ldots, y_{1 r_{1}}, \ldots, y_{m 1}, y_{m 2}, \ldots, y_{m r_{m}}\right)$, and

$$
\mathbf{Z}=\left(\begin{array}{cccc}
\mathbf{1}_{r_{1}} & 0 & \ldots & 0 \\
0 & \mathbf{1}_{r_{2}} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \mathbf{1}_{r_{m}}
\end{array}\right)
$$

- It follows that $\operatorname{Var}(\mathbf{y})=\sigma^{2} \mathbf{I}+\sigma_{\delta}^{2} \mathbf{Z} \mathbf{Z}^{\prime}$.
- Therefore, the mixed model is equivalent to

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{*}
$$

where $\boldsymbol{\varepsilon}^{*}$ has mean $\mathbf{0}$ and covariance \mathbf{V} where $\mathbf{V}=\sigma^{2} \mathbf{I}+\sigma_{\delta}^{2} \mathbf{Z} \mathbf{Z}^{\prime}$.

