STAT 410 - Linear Regression Lecture 10

Meng Li

Department of Statistics

Oct. 17, 2017

Outliers and leverage points

• Outliers are a fact of life. We can have both *x* and *y* outliers.

- The plot on the left shows a leverage point. The plot on the right shows an outlier.
- Leverage exposes the potential role of individual data points.
- Outliers are data points which break a pattern.

- The quantity $\frac{d\hat{y}_i}{dy_i}$ measures "leverage" of a point:
 - Let us perturb y_i a little bit at fixed x_i. How much do you expect ŷ_i to move?
 - If ŷ_i moves as much as y_i then clearly y_i has the potential to drive the regression - so y_i is leveraged.
 - If ŷ_i hardly moves at all then clearly y_i has no chance of driving the regression.
- Let h_{ij} be the (i,j)th entry of **H**. The fact $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$ (why?) can be rewritten as

$$\hat{y}_i = \sum_{j=1}^n h_{ij} y_j.$$

• Thus $h_{ii} = \frac{d\hat{y}_i}{dy_i}$ and it is defined as the **leverage** of (x_i, y_i) .

Properties of leverage

- The leverage $h_{ii} = \mathbf{x}'_i (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_i$, where \mathbf{x}_i is the *i*th row of \mathbf{X} .
- Leverage of a point only depends on x. It is a standardized measure of the distance of x_i from the center of x space.
- For example, we can obtain the following result in SLR:

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$

- Properties of h_{ii}:
 - 0 ≤ h_{ii} ≤ 1
 Fixed i: ∑ⁿ_{i=1} h_{ii} = 1

•
$$\bar{h} = \sum_{i=1}^{n} h_{ii}/n = p/n$$

- Fixed *i*: $h_{ii} = \sum_{j=1}^{n} h_{ij}^2$
- It follows that $h_{ii} \approx 1 \Longrightarrow h_{ij} \approx 0 \Longrightarrow \hat{y}_i = y_i$. Thus if $h_{ii} \approx 1$, the fitted regression line (almost) goes through (x_i, y_i) .
- Traditionally, a leverage point is one satisfies that

$$h_{ii} \ge 2\bar{h} = \frac{2p}{n}.$$

Outlier detection

- We have seen how we can use residuals for identifying problems with normality, constancy of variance, linearity.
- Standardized residuals, allow the residuals to be compared on the "standard scale".
- However, the standardized residuals s_i = y_i ŷ_i will be influenced if y_i is really leveraged as it will drag the regression line toward it.
- Solution: use the idea of "leave-one-out" (or "jackknifing") and calculate $e_{(i)} = y_i \hat{y}_{(i)}$, where $\hat{y}_{(i)}$ is the fitted value at x_i excluding y_i .
- It turns out

$$e_{(i)}=\frac{e_i}{1-h_{ii}}.$$

Studentized residuals

- We standardize $e_{(i)}$ by its variance $\sigma^2/(1-h_{ii})$: $\frac{e_i}{\sqrt{\sigma^2(1-h_{ii})}}$
- This leads to the (internally) studentized residuals

$$r_i = \frac{e_i}{\sqrt{MS_{Res}(1 - h_{ii})}}$$

- The **externally** studentized residuals use the *MS_{Res}* excluding *y_i*.
- On the other hand, r_i is nothing but $e_i/se(e_i)$ because

$$Cov(\mathbf{e}) = \sigma^2(\mathbf{I} - \mathbf{H}) \Longrightarrow Var(e_i) = \sigma^2(1 - h_{ii}).$$

- We shall use $|r_i|$ to help detect outliers.
- Many other tools to detect influence of a point: Cook's D (deletion diagnostic), DFFITS, DFBETAS, etc.