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Properties of an estimator - a review (STAT 310) I

Let X = (X1, . . . ,Xn) be a random sample taken from the
distribution fθ (·) where θ is the unknown parameter.
An estimator δ (X) is a function of the sample X
Two desirable properties of estimators under repeated
experiments:

“Overall accuracy”: E(δ (X))|θ) is close to θ .
“Precision”: Var(δ (X)|θ) is small.

An estimator δ (X) for θ is said to be unbiased if its overall
accurate for all possible values of θ . That is

E(δ (X)|θ) = θ , for all θ . (1)

The bias of δ (X) given θ is defined to be

Bδ (θ) = E(δ (X)|θ)−θ . (2)
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Properties of an estimator - a review (STAT 310) II

Bδ (θ)> 0: δ (X) tends to overestimate θ .
Bδ (θ)< 0: δ (X) tends to underestimate θ .

Neither unbiasedness nor precision alone is enough. More
generally, the goal is to have estimators likely to take
values close to the unknown fixed parameter.
We use a loss function L(θ ,a) as a notion of distance
between the estimate and the parameter, and choose an
estimator that minimizes the expected loss of δ (X).
Under the squared error loss, i.e., L(θ ,a) = (θ −a)2, this
leads to the mean squared error (MSE):

MSEδ (θ) = E{(δ (X)−θ)2|θ}= Var(δ |θ)+Bδ (θ)
2. (3)

This is sometimes referred to as the Bias-Variance
trade-off. We want estimators that strike a balance
between small bias and small variability.

3 / 14



Properties of an estimator - a review (STAT 310) III

Note that bias, variance and MSE are computed using only
information available before the experiment, not the
observed value of the data.
These are the average distances between the estimator
δ (X) and the parameter θ if the experiment is repeated
many times under fixed parameter value θ . Recall that this
is the sampling/frequentist perspective in contrast with the
Bayesian viewpoint.
The estimator δ (X) is chosen using information available
before the experiment. The estimate given data X = x is
simply the plug-in value of that estimator, i.e., δ (x).
Under the sampling perspective, do we know anything
about how far our realized estimate δ (x) is from the
underlying θ? The answer is No.
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Notation

Note on notation: lower case (x,y) vs. upper case (X,Y).
In many contexts (such as STAT310), we use the upper
case for a random variable and lower case for its realization.
In STAT410, we use the lower case y’s for both random
variables and the corresponding realizations unless stated
otherwise.
The regressor x can be viewed as fixed constants
thoroughly for our purposes:

Even with a random design for x’s, our model is conditional
on x’s thus x’s can be viewed as given.
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Properties of estimators in SLR

LS estimators (β̂0, β̂1)

(β̂0, β̂1) are unbiased estimators of (β0,β1):

E(β̂0) = β0, E(β̂1) = β1. (4)

(Marginal) variances of (β̂0, β̂1):

Var(β̂1) =
σ2

Sxx
, Var(β̂0) = σ

2
(

1
n
+

x̄2

Sxx

)
. (5)

Both β̂0 and β̂1 are linear combinations of yi.
LS estimators are the Best Linear Unbiased Estimators
(BLUE), known as the Gauss-Markov theorem.

The estimator of variance σ̂2 = ∑
n
i=1 e2

i /(n−2) is unbiased.
∑

n
i=1 e2

i : residual (error) sum of squares, denoted as SSRes.
∑

n
i=1 e2

i /(n−2): residual mean square, denoted as MSRes.
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Inferences on model parameters

Gaussian assumption on the error term:

εi
i.i.d.∼ N(0,σ2). (6)

All the previous moment properties do not depend on this
assumption.
We need this normal assumption in order to make
inferences on parameters such as:

Hypothesis testing
Interval estimation

Under the assumption of (6), we obtain that

β̂0 ∼ N
(

β0,σ
2
(

1
n
+

x̄2

Sxx

))
, β̂1 ∼ N

(
β1,

σ2

Sxx

)
, (7)

and
(n−2)σ̂2

σ2 =
SSRes

σ2 ∼ χ
2
n−2. (8)
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t-test for the slope

Suppose we wish to test the hypothesis that the slope
equals a constant, say β10.
The hypotheses are

H0 : β1 = β10, H1 : β1 6= β10 (9)

Test statistic:

T =
β̂1−β10

se(β̂1)
, (10)

where se(β̂1) =

√
σ̂2/Sxx =

√
MSRes/Sxx.

Recall: standard error (se) of an estimator is its estimated
standard deviation.

T ∼ tn−2 under H0 - Null distribution of T.
Reject H0 if |T|> tα/2,n−2, where tα/2,n−2 is the upper α/2
percentage of tn−2.
P-value = 2(1−Ftn−2(|T|)), where Ftn−2 is the CDF of tn−2.
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t-test for the intercept

Suppose we wish to test the hypothesis that the intercept
equals a constant, say β00.
The hypotheses are

H0 : β0 = β00, H1 : β0 6= β00 (11)

Test statistic:

T =
β̂0−β00

se(β̂0)
, (12)

where se(β̂0) =

√
MSRes

(
1
n +

x̄2

Sxx

)
.

T ∼ tn−2 under H0 - Null distribution of T.
Reject H0 if |T|> tα/2,n−2, where tα/2,n−2 is the upper α/2
percentage of tn−2.
P-value = 2(1−Ftn−2(|T|)), where Ftn−2 is the CDF of tn−2.

9 / 14



Testing Significance of Regression

H0 : β1 = 0, H1 : β1 6= 0

This tests the significance of regression; that is, is there
a linear relationship between the response and the
regressor.
Failing to reject β1 = 0, implies that there is no linear
relationship between y and x.

10 / 14



Interval estimation of parameters

100(1−α)% Confidence interval for the Slope:

β̂1− tα/2,n−2se(β̂1)≤ β1 ≤ β̂1 + tα/2,n−2se(β̂1).

100(1−α)% Confidence interval for the Intercept:

β̂0− tα/2,n−2se(β̂0)≤ β0 ≤ β̂0 + tα/2,n−2se(β̂0).

100(1−α)% Confidence interval for σ2:

(n−2)MSRes

χ2
α/2,n−2

≤ σ
2 ≤ (n−2)MSRes

χ2
1−α/2,n−2

.
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Interval estimation of the mean response

Let x0 be the level of the regressor variable at which we
want to estimate the mean response, i.e.

E(y|x0) = µy|x0 = β0 +β1x0.

Point estimate: Ê(y|x0) = µ̂y|x0 = β̂0 + β̂1x0

Variance of µ̂y|x0 :

Var(µ̂y|x0) = Var(β̂0 + β̂1x0) = Var(ȳ+ β̂1(x0− x̄))

= Var(ȳ)+Var(β̂1(x0− x̄)) (13)

=
σ2

n
+

σ2(x0− x̄)2

Sxx
= σ

2
(

1
n
+

(x0− x̄)2

Sxx

)
,

where (13) uses the fact that Cov(ȳ, β̂1(x0− x̄)) = 0.
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100(1−α)% confidence interval for E(y|x0):

µ̂y|x0−tα/2,n−2

√
MSRes

(
1
n
+

(x0− x̄)2

Sxx

)
≤ E(y|x0)

≤ µ̂y|x0 + tα/2,n−2

√
MSRes

(
1
n
+

(x0− x̄)2

Sxx

)
.
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Prediction interval of new observations

Suppose we wish to construct a prediction interval on a
future observation, y0 at a particular level of x, say x0.
Point estimate: ŷ0 = β̂0 + β̂1x0.
The confidence interval on the mean response at this point
is not appropriate for this situation. (Why? )
y0 = E(y|x = x0)+e0 thus is more uncertain than E(y|x = x0).
It can be shown:

E(y0− ŷ0) = 0, Var(y0− ŷ0) = σ
2
(

1+
1
n
+

(x0− x̄)2

Sxx

)
,

which uses the fact that y0 is independent of ŷ0.
100(1−α)% prediction interval on y0:

ŷ0−tα/2,n−2

√
MSRes

(
1+

1
n
+

(x0− x̄)2

Sxx

)
≤ y0

≤ ŷ0 + tα/2,n−2

√
MSRes

(
1+

1
n
+

(x0− x̄)2

Sxx

)
.
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