STAT 410 - Linear Regression Lecture 3

Meng Li

Department of Statistics

Sep. 5, 2017

Properties of an estimator - a review (STAT 310) I

- Let X = (X₁,...,X_n) be a random sample taken from the distribution f_θ(·) where θ is the unknown parameter.
- An estimator $\delta(X)$ is a function of the sample X
- Two desirable properties of estimators under repeated experiments:
 - "Overall accuracy": $E(\delta(X))|\theta$) is close to θ .
 - "Precision": $Var(\delta(X)|\theta)$ is small.
- An estimator δ(X) for θ is said to be unbiased if its overall accurate for all possible values of θ. That is

$$E(\delta(X)|\theta) = \theta$$
, for all θ . (1)

• The bias of $\delta(X)$ given θ is defined to be

$$B_{\delta}(\theta) = \mathcal{E}(\delta(X)|\theta) - \theta.$$
(2)

Properties of an estimator - a review (STAT 310) II

- $B_{\delta}(\theta) > 0$: $\delta(X)$ tends to overestimate θ .
- $B_{\delta}(\theta) < 0$: $\delta(X)$ tends to underestimate θ .
- Neither unbiasedness nor precision alone is enough. More generally, the goal is to have estimators *likely* to take values close to the *unknown fixed* parameter.
- We use a loss function L(θ, a) as a notion of distance between the estimate and the parameter, and choose an estimator that *minimizes the expected loss of* δ(X).
- Under the squared error loss, i.e., $L(\theta, a) = (\theta a)^2$, this leads to the mean squared error (MSE):

$$MSE_{\delta}(\theta) = \mathbb{E}\{(\delta(X) - \theta)^2 | \theta\} = \operatorname{Var}(\delta|\theta) + B_{\delta}(\theta)^2.$$
(3)

• This is sometimes referred to as the *Bias-Variance trade-off*. We want estimators that strike a balance between small bias and small variability.

Properties of an estimator - a review (STAT 310) III

- Note that bias, variance and MSE are computed using only information available *before the experiment*, not the observed value of the data.
- These are the *average* distances between the estimator $\delta(X)$ and the parameter θ *if the experiment is repeated many times* under fixed parameter value θ . Recall that this is the sampling/frequentist perspective in contrast with the Bayesian viewpoint.
- The estimator $\delta(X)$ is chosen using information available before the experiment. The estimate given data X = x is simply the plug-in value of that estimator, i.e., $\delta(x)$.
- Under the sampling perspective, do we know anything about how far our realized estimate δ(x) is from the underlying θ? The answer is No.

• Note on notation: lower case (*x*, *y*) vs. upper case (*X*, *Y*).

- In many contexts (such as STAT310), we use the upper case for a random variable and lower case for its realization.
- In STAT410, we use the lower case y's for **both** random variables and the corresponding realizations unless stated otherwise.
- The regressor *x* can be viewed as fixed constants thoroughly for our purposes:
 - Even with a random design for *x*'s, our model is conditional on *x*'s thus *x*'s can be viewed as given.

Properties of estimators in SLR

• LS estimators $(\hat{\beta}_0, \hat{\beta}_1)$

• $(\hat{\beta}_0, \hat{\beta}_1)$ are unbiased estimators of (β_0, β_1) :

$$E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1.$$
 (4)

• (Marginal) variances of $(\hat{\beta}_0, \hat{\beta}_1)$:

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \quad \operatorname{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right).$$
(5)

- Both $\hat{\beta}_0$ and $\hat{\beta}_1$ are linear combinations of v_i .
- LS estimators are the Best Linear Unbiased Estimators (BLUE), known as the Gauss-Markov theorem.
- The estimator of variance $\widehat{\sigma^2} = \sum_{i=1}^n e_i^2 / (n-2)$ is unbiased.
 - ∑ⁿ_{i=1} e²_i: residual (error) sum of squares, denoted as SS_{Res}.
 ∑ⁿ_{i=1} e²_i/(n-2): residual mean square, denoted as MS_{Res}.

Inferences on model parameters

• Gaussian assumption on the error term:

$$\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$
 (6)

- All the previous moment properties do not depend on this assumption.
- We need this normal assumption in order to make inferences on parameters such as:
 - Hypothesis testing
 - Interval estimation
- Under the assumption of (6), we obtain that

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)\right), \quad \hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right), \quad (7)$$

and

$$\frac{(n-2)\widehat{\sigma^2}}{\sigma^2} = \frac{SS_{Res}}{\sigma^2} \sim \chi^2_{n-2}.$$
 (8)

t-test for the slope

- Suppose we wish to test the hypothesis that the slope equals a constant, say β_{10} .
- The hypotheses are

$$H_0: \beta_1 = \beta_{10}, \quad H_1: \beta_1 \neq \beta_{10}$$
 (9)

• Test statistic:

$$T = \frac{\hat{\beta}_1 - \beta_{10}}{se(\hat{\beta}_1)},$$
 (10)

where $\operatorname{se}(\hat{\beta}_1) = \sqrt{\widehat{\sigma^2}/S_{xx}} = \sqrt{MS_{Res}/S_{xx}}.$

- Recall: standard error (se) of an estimator is its estimated standard deviation.
- $T \sim t_{n-2}$ under H_0 Null distribution of T.
- Reject H_0 if $|T| > t_{\alpha/2,n-2}$, where $t_{\alpha/2,n-2}$ is the upper $\alpha/2$ percentage of t_{n-2} .
- *P*-value = $2(1 F_{t_{n-2}}(|T|))$, where $F_{t_{n-2}}$ is the CDF of t_{n-2} .

t-test for the intercept

- Suppose we wish to test the hypothesis that the intercept equals a constant, say β_{00} .
- The hypotheses are

$$H_0: \beta_0 = \beta_{00}, \quad H_1: \beta_0 \neq \beta_{00}$$
 (11)

Test statistic:

$$T = \frac{\hat{\beta}_0 - \beta_{00}}{\mathsf{se}(\hat{\beta}_0)},\tag{12}$$

where
$$\operatorname{se}(\hat{\beta}_0) = \sqrt{MS_{Res}\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)}$$
.

- $T \sim t_{n-2}$ under H_0 Null distribution of T.
- Reject H_0 if $|T| > t_{\alpha/2,n-2}$, where $t_{\alpha/2,n-2}$ is the upper $\alpha/2$ percentage of t_{n-2} .
- *P*-value = $2(1 F_{t_{n-2}}(|T|))$, where $F_{t_{n-2}}$ is the CDF of t_{n-2} .

$$H_0: \boldsymbol{\beta}_1 = 0, \quad H_1: \boldsymbol{\beta}_1 \neq 0$$

- This tests the **significance of regression**; that is, is there a linear relationship between the response and the regressor.
- Failing to reject $\beta_1 = 0$, implies that there is no linear relationship between *y* and *x*.

Interval estimation of parameters

• $100(1-\alpha)\%$ Confidence interval for the Slope:

$$\hat{\beta}_1 - t_{\alpha/2, n-2} se(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2, n-2} se(\hat{\beta}_1).$$

• $100(1-\alpha)\%$ Confidence interval for the Intercept:

$$\hat{\beta}_0 - t_{\alpha/2, n-2} se(\hat{\beta}_0) \le \beta_0 \le \hat{\beta}_0 + t_{\alpha/2, n-2} se(\hat{\beta}_0).$$

• $100(1-\alpha)\%$ Confidence interval for σ^2 :

$$rac{(n-2)MS_{Res}}{\chi^2_{lpha/2,n-2}}\leq\sigma^2\leqrac{(n-2)MS_{Res}}{\chi^2_{1-lpha/2,n-2}}.$$

Interval estimation of the mean response

 Let x₀ be the level of the regressor variable at which we want to estimate the mean response, i.e.

$$E(y|x_0) = \mu_{y|x_0} = \beta_0 + \beta_1 x_0.$$

- Point estimate: $\widehat{\mathbf{E}(y|x_0)} = \hat{\mu}_{y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$
- Variance of $\hat{\mu}_{y|x_0}$:

$$\begin{aligned} \operatorname{Var}(\hat{\mu}_{y|x_0}) &= \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \operatorname{Var}(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x})) \\ &= \operatorname{Var}(\bar{y}) + \operatorname{Var}(\hat{\beta}_1 (x_0 - \bar{x})) \\ &= \frac{\sigma^2}{n} + \frac{\sigma^2 (x_0 - \bar{x})^2}{S_{xx}} = \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right), \end{aligned} \tag{13}$$

where (13) uses the fact that $\text{Cov}(\bar{y}, \hat{\beta}_1(x_0 - \bar{x})) = 0$.

• $100(1-\alpha)\%$ confidence interval for $E(y|x_0)$:

$$\begin{aligned} \hat{\mu}_{y|x_0} - t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)} &\leq \mathrm{E}(y|x_0) \\ &\leq \hat{\mu}_{y|x_0} + t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}. \end{aligned}$$

Prediction interval of new observations

- Suppose we wish to construct a prediction interval on a future observation, y₀ at a particular level of x, say x₀.
- Point estimate: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.
- The confidence interval on the mean response at this point is not appropriate for this situation. (Why?)
- $y_0 = E(y|x = x_0) + e_0$ thus is more uncertain than $E(y|x = x_0)$.
- It can be shown:

$$E(y_0 - \hat{y}_0) = 0,$$
 $Var(y_0 - \hat{y}_0) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right),$

which uses the fact that y_0 is independent of \hat{y}_0 .

• $100(1-\alpha)\%$ prediction interval on y_0 :

$$\hat{y}_{0} - t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}}\right)} \le y_{0}$$
$$\le \hat{y}_{0} + t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}}\right)}.$$